Comparative studies on hydrogen-bonded versus covalently linked donor-acceptor-donor dye arrays obtained from oligo(p-phenylene vinylene)s (OPVs) as donor and bay-substituted perylene bisimides (PERYs) as acceptor dyes are presented. Both systems form well-ordered J-type aggregates in methylcyclohexane, but only hydrogen-bonded arrays afford hierarchically assembled chiral OPV-PERY dye superstructures consisting of left-handed helical pi-pi co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study). In the case of hydrogen-bonded arrays, the stability of the aggregates in solution increases with increasing conjugation length of the OPV unit. The well-defined co-aggregated dyes presented here exhibit photoinduced electron transfer on subpicosecond time scale, and thus, these supramolecular entities might serve as valuable nanoscopic functional units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0475353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!