The proto-oncogene, bcl-2, has various functions besides its role in protecting cells from apoptosis. One of the functions is to regulate expression of other genes. Previous studies have demonstrated that Bcl-2 regulates activities of several important transcription factors including NF-kappaB and p53, and also their downstream genes. In our recent studies, we reported that Bcl-2 substantially downregulates expression of the endogenous alphaB-crystallin gene through modulating the transcriptional activity of lens epithelium-derived growth factor (LEDGF). In the present communication, we report that human Bcl-2 can positively regulate expression of the proto-oncogenes c-jun and c-fos. Moreover, it enhances the DNA binding activity and transactivity of the activating protein-1 (AP-1). Furthermore, we present evidence to show that Bcl-2 can also activate both ERK1 and ERK2 MAP kinases. Inhibition of the activities of these kinases or the upstream activating kinases by pharmacological inhibitors or dominant-negative mutants abolishes the Bcl-2-mediated regulation of AP-1, LEDGF and their downstream genes. Together, our results demonstrate that through activation of the ERK kinase signaling pathway, Bcl-2 regulates the transcriptional activities of multiple transcription factors, and hence modulates the expression of their downstream genes. Thus, our results provide a mechanism to explain how Bcl-2 may regulate expression of other genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1208041 | DOI Listing |
Transl Cancer Res
December 2024
Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China.
Background: In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.
View Article and Find Full Text PDFEcancermedicalscience
November 2024
Instituto Venezolano de Investigaciones Científicas (IVIC), Unidad de Estudios Genéticos y Forenses (UEGF), Caracas 1020, República Bolivariana de Venezuela.
Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. The epidermal growth factor receptor (EGFR) is relevant in the development and progression of CRC, because it is part of multiple signaling pathways involved in processes of the cell cycle, their malfunction causes dysregulation and subsequently carcinogenesis. Consequently, therapies were developed with anti-EGFR monoclonal antibodies (MAbs) that improve the survival of patients with CRC.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Breast Surgery, Institute of Breast Disease, Second Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116023, Liaoning, China.
Identifying driver genes in cancer is a difficult task because of the heterogeneity of cancer as well as the complex interactions among genes. As sequencing data become more readily available, there is a growing need for detecting cancer driver genes based on statistical and mathematical modeling methods. Currently, plenty of driver gene identification algorithms have been published, but they fail to achieve consistent results.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!