Coupling glial numbers and axonal patterns.

Cell Cycle

NeuroDevelopment Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.

Published: September 2004

The control of the rate of cell division enables cells to respond to signals from other cells and this promotes the emergence of order as cell mass increases during growth. Glial cell proliferation is coupled to axon guidance, and the sequential deployment of glial cells in constrained numbers enables the sequential sorting out of axons into appropriate trajectories through time.(1) This is achieved by the neuron-dependent regulation of glial division at the G(1) phase. Early on, Prospero plays a key role controlling the G(1) phase and it enables the glia to proliferate in response to neurons. Later, Prospero maintains subsets of glia in G(1) arrest, retaining mitotic potential, whereas non-Prospero glia terminally differentiate. Only this population of Prospero quiescent precursors can overproliferate when neurons are eliminated, inducing a repair response. It is compelling to investigate whether the vertebrate homologue Prox1 may enable the repair response of vertebrate glia.

Download full-text PDF

Source

Publication Analysis

Top Keywords

repair response
8
coupling glial
4
glial numbers
4
numbers axonal
4
axonal patterns
4
patterns control
4
control rate
4
rate cell
4
cell division
4
division enables
4

Similar Publications

Beyond punishment: psychological foundations of restorative interventions.

Trends Cogn Sci

December 2024

Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.

Work on the psychology of justice has largely focused on punishment. However, punishment is not our only strategy for dealing with conflict. Rather, emerging work suggests that people often respond to transgressions by compensating victims, involving third-party mediators, and engaging in forgiveness.

View Article and Find Full Text PDF

Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications.

Int J Biol Macromol

December 2024

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India. Electronic address:

Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing.

View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

The increasing prevalence of LED technology heightened blue light (BL) exposure, raising concerns about its long-term effects on ocular health. This study investigated the transcriptomic response of conjunctiva to BL exposure, highlighting potential biomarkers for conjunctival injury. We exposed human conjunctival epithelial cells and C57BL/6 mice to BL to establish in vitro and in vivo models and identified the responsive genes in mice's conjunctiva to BL exposure by RNA sequencing transcriptome analysis.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!