The diffusible platelet stimuli ADP and thromboxane A(2) activate multiple G protein-mediated signaling pathways and function as important secondary mediators of platelet activation as they are released from activated platelets. Because they can also increase their own formation and release, their effects are amplified; eventually, all major G protein-mediated signaling pathways are activated. The multiple positive feedback mechanisms operating during platelet activation have obscured the exact analysis of the roles individual G protein-mediated signaling pathways play during the platelet activation process. In this report, we show that platelets lacking G(q) and G(13) are completely unresponsive to diffusible stimuli such as ADP, thromboxane A(2), or thrombin, even when applied at very high concentrations in combination, whereas all stimuli are able to induce platelet aggregation, shape change, and RhoA activation in platelets lacking only one Galpha subunit. This shows that G(q) or G(13) is required to induce some platelet activation, whereas the activation of G(i)-mediated signaling alone is not sufficient to induceactivation of mouse platelets. In addition, platelets lacking Galpha(q) and Galpha(13) adhered normally to collagen under high shearbut did not aggregate any more in response to collagen, indicating that collagen-induced platelet activation but not platelet adhesion requires intact G protein-mediated signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M408962200 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, USA.
Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany.
Background/objectives: Adenoviral vector-based vaccines against COVID-19 rarely cause vaccine-induced immune thrombocytopenia and thrombosis (VITT), a severe adverse reaction caused by IgG antibodies against platelet factor 4 (PF4). To study VITT, patient samples are crucial but have become a scarce resource. Recombinant antibodies (rAbs) derived from VITT patient characteristic amino acid sequences of anti-PF4 IgG are an alternative to study VITT pathophysiology.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China. Electronic address:
Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis.
View Article and Find Full Text PDFGlycobiology
January 2025
Institute of Blood Transfusion, Shanghai Blood Center, 1191 Hongqiao Road, Shanghai 200051, China.
Glycosylation is an important posttranslational modification in platelets, and the glycosylation pattern is critical for platelet function. To date, the exploration of the roles of various glycoforms in specific platelet functions is largely lacking. In this study, a global analysis of intact N-glycopeptides in human platelets was performed to map all the glycopeptides, glycosites and glycans of platelets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!