Background: Vein graft stenosis is believed to be the pathophysiologic response of vascular tissue to injury and is the major cause of vein graft failure. Therapeutic interventions might improve with knowledge of the physiologic pathways involved in the hyperplastic response to vascular injury. In this study, our purpose was to identify induced, early pathways that might be important in the human response to vascular injury.

Study Design: Human saphenous vein from 7 patients was organ cultured or crush injured and cultured for 48 or 72 hours after harvest. Gene expression was determined for syngeneic veins at harvest and at the experimental time points and compared to determine which genes were induced or repressed. Expressed genes (the transcriptional profile) were then assigned to functional physiologic classes.

Results: At 72 hours, in both organ-cultured and crush-injured vein, the gene for the Wnt ligand protein (WNT5A) was induced. At 48 hours in the organ-cultured vein only, the gene for the Frizzled protein (FZD2), a subunit of the Wnt receptor complex, was repressed. At 72 hours in injured vein only, the gene for the product of Wnt signaling (WISP1) was induced; the gene for the Wnt-binding, soluble Frizzled-related protein (FRZB) was repressed; and the gene for Dickkopf (DKK1) protein, which binds to the low density lipoprotein receptor-related protein subunit of the Wnt receptor complex, was induced.

Conclusions: Early induction of WNT5A, coupled with the coordinated induction and repression of genes that modulate the Wnt signaling pathway, led to the early, selective induction of WISP1 and no other Wnt-inducible genes. This early, selective expression of a limited gene set might characterize the human vascular response to injury, and could enable development of therapies to treat the clinical sequelae of this response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jamcollsurg.2004.04.023DOI Listing

Publication Analysis

Top Keywords

response vascular
12
vein gene
12
gene
8
gene expression
8
human saphenous
8
saphenous vein
8
transcriptional profile
8
vein graft
8
hours organ-cultured
8
subunit wnt
8

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Role of Cardiovascular MR Imaging and MR Angiography in Patients with Pulmonary Vascular Disease.

Radiol Clin North Am

March 2025

Radiology Department, Northwestern University Feinberg School of Medicine, Arkes Pavilion, 676 North St Clair Street, Suite 800, Chicago, IL 60611, USA. Electronic address:

Cardiac MR imaging and pulmonary MR angiography (MRA) are important clinical tools for the assessment of pulmonary vascular diseases. There are evolving noncontrast and contrast-enhanced techniques to evaluate pulmonary vasculature. Pulmonary MRA is a feasible imaging alternative to CTA in pulmonary embolism detection.

View Article and Find Full Text PDF

Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit.

Life Sci

January 2025

Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:

Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.

View Article and Find Full Text PDF

Endocan as a marker of endotheliitis in COVID-19 patients: modulation by veno-venous extracorporeal membrane oxygenation, arterial hypertension and previous treatment with renin-angiotensin-aldosterone system inhibitors.

Inflamm Res

January 2025

Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.

Background And Aims: Endocan has been scarcely explored in COVID-19, especially regarding its modulation by veno-venous extracorporeal membrane oxygenation (VV-ECMO), hypertension or previous renin-angiotensin-aldosterone system (RAAS) inhibitors treatment. We compared endocan and other endotheliitis markers in hospitalized COVID-19 patients and assessed their modulation by VV-ECMO, hypertension and previous RAAS inhibitors treatment.

Material And Methods: Serum endocan, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were measured in "severe" (n = 27), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) COVID-19 patients at admission, days 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point.

View Article and Find Full Text PDF

Tertiary Lymphoid Structures as a Biomarker in Immunotherapy and Beyond: Advancing Towards Clinical Application.

Cancer Lett

January 2025

. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:

Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!