The neural basis of trait anxiety is poorly understood. In genetically selected hyperanxious (high anxiety-related behavior; HAB) rats, diazepam induces a stronger anxiolytic response than in hypoanxious (low anxiety-related behavior; LAB) rats. A screen for neuronal response differences to diazepam between HAB and LAB rats using pharmacologic fMRI (phMRI) at 7 T revealed a blunted diazepam-induced neuronal deactivation in the dorsomedial prefrontal cortex (dmPFC) of HABs. This was not due to reduced benzodiazepine (BDZ) receptor densities in this region. Instead, dmPFC tissue oxygenation at baseline was found to be significantly lower in HABs. This suggests a tonic relative hypoactivity under the highly stressful phMRI conditions, offering an explanation for the reduced responsivity to the neural depressant effect of diazepam in the sense of a floor effect. Subsequently, Fos immunoreactivity (Fos-IR) showed that ethologically relevant stressors also cause less dmPFC activation in HABs. In the context of an anxiety-inhibiting role of the dmPFC, we propose that failure to sufficiently activate this region in stressful situations may contribute to high trait anxiety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2004.06.012DOI Listing

Publication Analysis

Top Keywords

trait anxiety
12
high trait
8
dorsomedial prefrontal
8
prefrontal cortex
8
anxiety-related behavior
8
lab rats
8
anxiety hyporeactivity
4
hyporeactivity stress
4
stress dorsomedial
4
cortex combined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!