The gene expression profiles of human postmortem parietal and prefrontal cortex samples of normal controls and patients with bipolar disease, or human neuroblastoma flat (NBFL) cells treated with the mood-stabilizing drug, valproate, were used to compare the performance of Affymetrix oligonucleotide U133A GeneChips and Agilent Human 1 cDNA microarrays. Among those genes represented on both platforms, the oligo array identified 26-53% more differentially expressed genes compared to the cDNA array in the three experiments, when identical fold change and t-test criteria were applied. The increased sensitivity was primarily the result of more robust fold changes measured by the oligonucleotide system. Essentially all gene changes overlapping between the two platforms were co-directional, and ranged from 4 to 19% depending upon the amount of biological variability within and between the comparison groups. Q-PCR validation rates were virtually identical for the two platforms, with 23-24% validation in the prefrontal cortex experiment, and 56% for both platforms in the cell culture experiment. Validated genes included dopa decarboxylase, dopamine beta-hydroxylase, and dihydropyrimidinase-related protein 3, which were decreased in NBFL cells exposed to valproate, and spinocerebellar ataxia 7, which was increased in bipolar disease. The modest overlap but similar validation rates show that each microarray system identifies a unique set of differentially expressed genes, and thus the greatest information is obtained from the use of both platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2004.04.002 | DOI Listing |
Sleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering and Automation, Northeastern University, Wenhua Street, Shenyang 110819, China.
The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile.
Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea.
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
School of Medicine, South China University of Technology, Guangzhou, China.
Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.
Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!