Objective: 12-0-tetradecanoylphorbol-13 acetate (TPA) plays an important role in precipitating cell differentiation for various tumor cells, especially leukemic cells. Changes of many genes may be involved in this process. The purpose of this study was to observe the relationship between the EGR1mRNA expression and cell differentiation during TPA-induced K562 cell differentiation.
Methods: Incubation of human K562 cells in vitro was applied to cultivate K562 cells. The cells were treated in two different ways. K562 cells of experiment group were treated with TPA and those of control group were treated without TPA. Using morphology (Wright's staining and NSE staining) and flow cytometry (FCM), the investigators observed the differentiation characteristics of K562 cells, cell-cycle and the differentiation antigen expressions of CD33 and CD14 on cell membranes. RT-PCR was carried out to assay EGR1 mRNA expression.
Results: After treated with TPA for 7 d, the morphology of K562 cells obviously tended to mature differentiation, like monocytes. The differentiation rate of induced K562 cells was up to 95% in experiment group and 4.5% in control group, respectively. Using SPSS software, the above result showed statistical significance (P < 0.01). Using NSE staining, K562 cells showed positive reaction. Some of them were densely stained. The positive rate was up to 86%. More than half of the positive cells could be inhibited by NaF. The inhibiting rate of NaF was up to 58.72%, showing statistical difference when compared with that of control group. FCM analysis showed that most of K562 cells stimulated by TPA underwent G1/S phase cell-cycle arrest. The composing rate of cell-cycle in TPA-treated group showed that (53.7 +/- 1.25)% of cells were at G0 + G1 phase and (44.3 +/- 1.32)% were at S phase (P < 0.05). The level of CD33 expression on cell membranes was mildly decreased from 0.997% to 0.893% (P > 0.05). However, the level of CD14 expression was significantly increased from 0.049% to 0.387% (P < 0.05).
Conclusion: K562 cells could express EGR1mRNA during TPA-induced differentiation, which suggested that EGR1mRNA might participate in the process of K562 cells differentiating into monocyte/macrophages, and might play an important role in precipitating and maintaining cell differentiation for leukemic cells.
Download full-text PDF |
Source |
---|
ESMO Open
January 2025
Yale Cancer Center, Yale School of Medicine, New Haven, USA. Electronic address:
Background: Natural killer (NK) cells are important contributors to antitumor immunity in clear-cell renal cell carcinoma (ccRCC). However, their phenotype, function, and association with clinical outcomes in ccRCC remain poorly understood.
Materials And Methods: We analyzed single-cell RNA sequencing data from 13 primary tumors, 1 localized tumor extension, and 1 metastasis from ccRCC patients at different clinical stages.
PLoS One
January 2025
Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Background: Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy.
Methods: Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64.
Bioconjug Chem
January 2025
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland.
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!