Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids.

Biochem J

Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Ramón y Cajal, 7, E-47005 Valladolid, Spain.

Published: November 2004

During cell activation, mitochondria play an important role in Ca2+ homoeostasis due to the presence of a fast and specific Ca2+ channel in its inner membrane, the mitochondrial Ca2+ uniporter. This channel allows mitochondria to buffer local cytosolic [Ca2+] changes and controls the intramitochondrial Ca2+ levels, thus modulating a variety of phenomena from respiratory rate to apoptosis. We have described recently that SB202190, an inhibitor of p38 MAPK (mitogen-activated protein kinase), strongly activated the uniporter. We show in the present study that a series of natural plant flavonoids, widely distributed in foods, produced also a strong stimulation of the mitochondrial Ca2+ uniporter. This effect was of the same magnitude as that induced by SB202190 (an approx. 20-fold increase in the mitochondrial Ca2+ uptake rate), developed without measurable delay and was rapidly reversible. In intact cells, the mitochondrial Ca2+ peak induced by histamine was also largely increased by the flavonoids. Stimulation of the uniporter by either flavonoids or SB202190 did not require ATP, suggesting a direct effect on the uniporter or an associated protein which is not mediated by protein phosphorylation. The most active compound, kaempferol, increased the rate of mitochondrial Ca2+ uptake by 85+/-15% (mean+/-S.E.M., n=4) and the histamine-induced mitochondrial Ca2+ peak by 139+/-19% (mean+/-S.E.M., n=5) at a concentration of 1 microM. Given that flavonoids can reach this concentration range in plasma after ingestion of flavonoid-rich food, these compounds could be modulating the uniporter under physiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134084PMC
http://dx.doi.org/10.1042/BJ20040990DOI Listing

Publication Analysis

Top Keywords

mitochondrial ca2+
24
ca2+
9
natural plant
8
plant flavonoids
8
ca2+ uniporter
8
ca2+ uptake
8
ca2+ peak
8
mitochondrial
7
uniporter
7
flavonoids
5

Similar Publications

Background: Aggregation of transactive response DNA binding protein 43 (TDP-43) is the major pathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, in up to 50% of Alzheimer's disease (AD) cases TDP-43 pathology was discovered and this pathology has been referred to as limbic-predominant age-related TDP43 encephalopathy (LATE). Several studies reported that TDP-43 binds to heat shock protein family B (small) member 1 (HSPB1 or HSP27) but no functional evaluation of this interaction has been explored.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive memory loss and cognitive decline. The precise molecular mechanisms underlying AD pathogenesis remain uncertain, underscoring the need for further investigation to identify novel therapeutic targets. We recently demonstrated that mitochondrial calcium (Ca) overload significantly contributes to the development of AD, capable of independently driving AD-like pathology.

View Article and Find Full Text PDF

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

For decades, studies have shown how exposure to non-essential trace metals such as lead (Pb) and cadmium (Cd) largely impact global wildlife. Ecoimmunotoxicology has emerged in the past two decades and focuses on the effects of pollutants on the immune system of free-ranging organisms. Adverse outcome pathways (AOPs) represent a conceptual approach to explore the mechanistic linkage between a molecular initiating event and adverse outcomes, potentially at all biological levels of organisation.

View Article and Find Full Text PDF

Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N)] (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!