The boundary beta function generates the renormalization group acting on the universality classes of one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the boundary. We prove a gradient formula for the boundary beta function, expressing it as the gradient of the boundary entropy s at fixed nonzero temperature. The gradient formula implies that s decreases under renormalization, except at critical points (where it stays constant). At a critical point, the number exp((s) is the "ground-state degeneracy," g, of Affleck and Ludwig, so we have proved their long-standing conjecture that g decreases under renormalization, from critical point to critical point. The gradient formula also implies that s decreases with temperature, except at critical points, where it is independent of temperature. It remains open whether the boundary entropy is always bounded below.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.93.030402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!