Overlapping of resonances and stochasticity of electron trajectories in cyclotron masers.

Phys Rev Lett

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742-3511, USA.

Published: July 2004

When an electromagnetic (EM) wave has a large amplitude and electrons have a large energy, the electron cyclotron frequency in the process of interaction with an EM wave can vary significantly. This can lead to overlapping of cyclotron resonances at different harmonics. It is shown that such an overlapping causes the stochasticity of electron orbits. Estimates show that this effect can be present in relativistic gyrodevices currently under development for driving future accelerators.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.055101DOI Listing

Publication Analysis

Top Keywords

stochasticity electron
8
overlapping resonances
4
resonances stochasticity
4
electron trajectories
4
trajectories cyclotron
4
cyclotron masers
4
masers electromagnetic
4
electromagnetic wave
4
wave large
4
large amplitude
4

Similar Publications

Dedicator of Cytokinesis 2 regulates cytoskeletal actin dynamics and is essential for platelet biogenesis and functions.

Cardiovasc Res

January 2025

Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.

Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

Synaptic vesicle (SV) trafficking toward the plasma membrane (PM) and subsequent SV maturation are essential for neurotransmitter release. These processes, including SV docking and priming, are co-ordinated by various proteins, such as SNAREs, Munc13 and synaptotagmin (Syt), which connect (tether) the SV to the PM. Here, we investigated how tethers of varying lengths mediate SV docking using a simplified mathematical model.

View Article and Find Full Text PDF

A brief introduction to the diffusion Monte Carlo method and the fixed-node approximation.

J Chem Phys

December 2024

Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy.

Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and postgraduate classes. This tutorial is a step toward filling this gap.

View Article and Find Full Text PDF

Mixed Resolution-of-the-Identity Compressed Exchange for Hybrid Mixed Deterministic-Stochastic Density Functional Theory from Low to Extreme Temperatures.

J Chem Theory Comput

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!