Optical spectroscopy of single impurity centers in semiconductors.

Phys Rev Lett

National Renewable Energy Laboratory, Golden, Colorado 80401, USA.

Published: August 2004

Using optical spectroscopy with diffraction limited spatial resolution, the possibility of measuring the luminescence from single impurity centers in a semiconductor is demonstrated. Selectively studying individual centers that are formed by two neighboring nitrogen atoms in GaAs makes it possible to unveil their otherwise concealed polarization anisotropy, analyze their selection rules, identify their particular configuration, map their spatial distribution, and demonstrate the presence of a diversity of local environments. Circumventing the limitation imposed by ensemble averaging and the ability to discriminate the individual electronic responses from discrete emitters provides an unprecedented perspective on the nanoscience of impurities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.067403DOI Listing

Publication Analysis

Top Keywords

optical spectroscopy
8
single impurity
8
impurity centers
8
spectroscopy single
4
centers semiconductors
4
semiconductors optical
4
spectroscopy diffraction
4
diffraction limited
4
limited spatial
4
spatial resolution
4

Similar Publications

This research examined the distinction between organic and conventional mango fruits, chips, and juice using portable near-infrared (NIR) spectroscopy. A comprehensive analysis was conducted on a sample of 100 mangoes (comprising 50 organic and 50 conventional) utilising a portable NIR spectrometer that spans a wavelength range from 900 to 1700 nm. The mangoes were assessed in their entirety and their juice and chip forms.

View Article and Find Full Text PDF

Significance: Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies.

Aim: High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications.

View Article and Find Full Text PDF

This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

Optical detection of an individual single nano-object on an opaque substrate and direct determination of its absorption cross section is demonstrated using reflective spatial modulation spectroscopy. This method is applied to optical imaging and investigation of individual single-wall carbon nanotubes in the 1.6 nm diameter range on silicon substrates, which are also individually characterized by atomic force microscopy, scanning electron microscopy, and in situ micro-Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!