A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier.

J Zhejiang Univ Sci

Center for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Joint Laboratory of Optical Communications, Zhejiang University, Hangzhou 310027, China.

Published: September 2004

The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.

Download full-text PDF

Source
http://dx.doi.org/10.1631/jzus.2004.1130DOI Listing

Publication Analysis

Top Keywords

fiber amplifier
8
erbium-doped fiber
8
novel 3-stage
4
3-stage structure
4
structure low-noise
4
low-noise high-gain
4
high-gain gain-flattened
4
gain-flattened l-band
4
l-band erbium
4
erbium doped
4

Similar Publications

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

A simple and integrated fiber-optic real-time qPCR platform for remote and distributed detection of epidemic virus infection.

Biosens Bioelectron

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China; College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Quantitative polymerase chain reaction (qPCR) is a well-recognized technique for amplifying and quantifying nuclear acid, and its real-time monitoring capability, ultrahigh sensitivity, and accuracy make it a "golden-standard" tool in both molecular biology research and clinical diagnostics. However, current qPCR tests rely on bulky instrumentation and skilled laboratorians in centralized laboratories, which spatially and temporally separate the sample collection and test, leading to longer sample turnaround times (TATs) and limited working conditions. Herein, we propose an integrated optical fiber real-time polymerase chain reaction (iF-PCR) system that successfully allows convenient sample collection, rapid thermocycling, closed-loop thermal annealing, and real-time fluorescence detection in a tiny capillary reactor.

View Article and Find Full Text PDF

We developed a 915-nm pumped, passively Q-switched 976-nm ytterbium all-fiber laser with an average output power of 4.3 W. The laser utilizes a 16-cm Yb gain fiber, passively Q-switched by a 1.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

This study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!