Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) was applied to the determination of phthalate esters in human serum. The present method decreased the sample preparation time by a factor of 50 by using direct immersion SPME with an 85-microm polyacrylate fiber to extract phthalate esters from the matrix. The use of fast GC/MS further improves total analysis time when compared to other techniques. Isotope dilution was successfully applied to improve the precision, reproducibility, and repeatability of the SPME method. The linear dynamic range spans several orders of magnitude from low ppb to ppm levels, and the LOD for the method is 15 pg microL(-1) on average with RSDs less than 4% for the six phthalate esters included in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-004-2743-6 | DOI Listing |
Sci Rep
December 2024
Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.
View Article and Find Full Text PDFJ Sep Sci
December 2024
Departamento de Química, Universidade Federal de Santa Catarina, Florianopolis, Brazil.
This study introduces a green approach to sample preparation by applying natural deep eutectic solvents (NADES) to determine phthalates in carbonated soft drinks using high-performance liquid chromatography with diode array detector (HPLC-DAD). The method employs hollow fiber-microporous membrane liquid-liquid microextraction combined with a 96-well plate system, utilizing fatty-acid-based DES in the pores of the membranes. This methodology substantially reduces the use of organic solvents, and its efficiency is comparable to or better than conventional methods.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.
Phthalate acid esters (PAEs) and bisphenol A (BPA) are recognized as common endocrine disruptors associated with various adverse effects on human health. However, limitations in existing systematic studies, particularly in air detection, have raised concerns about potential health risks from inhalation exposure. In this study, PM samples were collected in Dongying, a petrochemical city, from October 27 to December 6, 2021.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China. Electronic address:
Background: An increasing number of animal studies have indicated that exposure to phthalate esters (PAEs) may cause high blood pressure. However, population-based evidence is limited, particularly for pregnant women and young children.
Objective: To examine the correlation between prenatal exposure to phthalate ester metabolites (mPAEs) and blood pressure in preschool children.
Talanta
December 2024
Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany. Electronic address:
The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!