The mammalian mismatch repair (MMR) system has been implicated in activation of the G(2) checkpoint induced by methylating agents. In an attempt to identify the signaling events accompanying this phenomenon, we studied the response of MMR-proficient and -deficient cells to treatment with the methylating agent temozolomide (TMZ). At low TMZ concentrations, MMR-proficient cells were growth-inhibited, arrested in G(2)/M, and proceeded to apoptosis after the second post-treatment cell cycle. These events were accompanied by activation of the ATM and ATR kinases, and phosphorylation of Chk1, Chk2, and p53. ATM was activated later than ATR and was dispensable for phosphorylation of Chk1, Chk2, and p53 on Ser15 and for triggering of the G(2)/M arrest. However, it conferred protection against cell growth inhibition induced by TMZ. ATR was activated earlier than ATM and was required for an efficient phosphorylation of Chk1 and p53 on Ser15. Moreover, abrogation of ATR function attenuated the TMZ-induced G(2)/M arrest and increased drug-induced cytotoxicity. Treatment of MMR-deficient cells with low TMZ concentrations failed to activate ATM and ATR and to cause phosphorylation of Chk1, Chk2, and p53, as well as G(2)/M arrest and apoptosis. However, all these events occurred in MMR-deficient cells exposed to high TMZ concentrations, albeit with faster kinetics. These results demonstrate that TMZ treatment activates ATM- and ATR-dependent signaling pathways and that this process is absolutely dependent on functional MMR only at low drug concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.66.3. | DOI Listing |
Curr Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFNeoplasia
December 2024
Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China. Electronic address:
Background: Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA.
Methods: To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation.
EMBO J
January 2025
Carson International Cancer Center & Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University Medical School, 518060, Shenzhen, Guangdong, China.
Purpose: This study aimed to stratify patients with locally advanced rectal cancer (LARC) based on their response to neoadjuvant chemoradiation therapy (nCRT) using DNA damage response (DDR)-related proteins measured in peripheral blood monocytes (PBMCs). We optimized and validated an innovative assay to quantify these proteins, providing a predictive framework for nCRT response.
Experimental Design: We used PBMCs collected from LARC patients either before or after standard course of ∼5.
DNA Repair (Amst)
November 2024
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan. Electronic address:
A nucleoside analog, Cidofovir (CDV), is used for the treatment of viral diseases such as cytomegalovirus retinitis and herpes virus infection. CDV converts to its active diphosphate metabolite (CDVpp) through cellular kinases and acts as a competitive inhibitor for viral polymerase thereby interfering with viral replication. However, the effect of this drug on the replication of healthy host cells and the mechanisms involved in the cellular tolerance to CDV are yet to be fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!