Infection can protect against subsequent disease by induction of both humoral and cellular immunity, but inert protein-based vaccines are not as effective. In this study, we present a new vaccine design, with Ag covalently conjugated to solid core nano-beads of narrowly defined size (0.04-0.05 microm) that localize to dendritic cells (DEC205(+) CD40(+), CD86(+)) in draining lymph nodes, inducing high levels of IFN-gamma production (CD8 T cells: precursor frequencies 1/5000 to 1/1000) and high Ab titers in mice. Conjugation of Ag to these nano-beads induced responses that were significantly higher (2- to 10-fold) than those elicited by other bead sizes, and higher than a range of currently used adjuvants (alum, QuilA, monophosphoryl lipid A). Responses were comparable to CFA/IFA immunization for Abs and ex vivo peptide-pulsed dendritic cell immunization for CD8 T cells. A single dose of Ag-conjugated beads protected mice from tumors in two different model challenges and caused rapid clearance of established tumors in mice. Thus, a range of Ags conjugated to nano-beads was effective as immunogens in both therapeutic and prophylactic scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.173.5.3148DOI Listing

Publication Analysis

Top Keywords

cd8 cells
8
size-dependent immunogenicity
4
immunogenicity therapeutic
4
therapeutic protective
4
protective properties
4
properties nano-vaccines
4
nano-vaccines tumors
4
tumors infection
4
infection protect
4
protect subsequent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!