A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. | LitMetric

We report here on the expression of slc5a8 in kidney and its relevance to Na(+)-coupled reabsorption of lactate. slc5a8 is the murine ortholog of SLC5A8, a candidate tumor suppressor gene, which we recently cloned from human intestine and demonstrated its functional identity as a Na(+)-coupled transporter for short-chain fatty acids and lactate. The slc5a8 cDNA, cloned from mouse kidney, codes for a protein consisting of 611 amino acids. When expressed heterologously in mammalian cells or Xenopus oocytes, slc5a8 mediates Na(+)-coupled electrogenic transport of lactate/pyruvate as well as short-chain fatty acids (e.g. acetate, propionate, and butyrate). The Na+/fatty acid stoichiometry varies depending on the fatty acid substrate (2:1 for lactate and 4:1 for propionate). This phenomenon of variable Na+/substrate stoichiometry depending on the fatty acid substrate is also demonstrable with human SLC5A8. In situ hybridization with sagittal sections of mouse kidney demonstrates abundant expression of the transcripts in the cortex as well as the medulla. Brush border membrane vesicles prepared from rabbit kidney are able to transport lactate in a Na(+)-coupled manner. The transport process exhibits the overshoot phenomenon, indicating uphill lactate transport in response to the transmembrane Na+ gradient. The Na(+)-coupled lactate transport in these membrane vesicles is inhibitable by short-chain fatty acids. We conclude that slc5a8 is expressed abundantly in the kidney and that it plays a role in the active reabsorption of lactate. slc5a8 is the first transporter known to be expressed in mammalian kidney that has the ability to mediate the Na(+)-coupled reabsorption of lactate.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M405365200DOI Listing

Publication Analysis

Top Keywords

reabsorption lactate
12
lactate slc5a8
12
short-chain fatty
12
fatty acids
12
lactate
9
expression slc5a8
8
slc5a8 kidney
8
transport lactate
8
slc5a8
8
na+-coupled reabsorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!