We report the identification of a novel cDNA fragment that shows significantly reduced expression in cancerous tissue compared with paired non-cancerous liver tissue in patients with hepatocellular carcinoma (HCC). The full-length transcript of 1733 bp encodes a protein of 308 amino acids that has all the hallmark features of mitochondrial carrier proteins. We designate the novel protein as HDMCP (HCC-down-regulated mitochondrial carrier protein). The HDMCP orthologs in human, mouse, and rat are found to exhibit close similarity in protein sequence and gene organization, as well as exclusive expression in the liver. Moreover, conserved syntenic regions have been demonstrated at the HDMCP gene locus in the human, mouse, and rat genome. Taken together, we suggest that HDMCP might have a conserved and unique biological function in the liver. Overexpression of HDMCP in transiently transfected cancer cells results in the loss of staining by MitoTracker dye, indicating that HDMCP could induce the dissipation of mitochondrial membrane potential (DeltaPsim). However, HDMCP-mediated disruption of DeltaPsim is not related to mitochondrial permeability transition or apoptosis. In addition, we further demonstrate that the dissipation of DeltaPsim is accompanied by significant reduction of cellular ATP in 293T cells overexpressing HDMCP or uncoupling protein 2 (UCP2). Our present findings suggest that HDMCP might be one of the long postulated uncoupling proteins that catalyze the physiological "proton leak" in the liver. The down-regulation of HDMCP in HCC cancer cells might result in the elevation of DeltaPsim, a common phenomenon found in cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M403683200DOI Listing

Publication Analysis

Top Keywords

mitochondrial carrier
12
cancer cells
12
hdmcp
9
hepatocellular carcinoma
8
carrier protein
8
uncoupling protein
8
protein hdmcp
8
human mouse
8
mouse rat
8
protein
7

Similar Publications

Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood.

View Article and Find Full Text PDF

The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH, water, and carbon dioxide. The parasites of the .

View Article and Find Full Text PDF

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.

View Article and Find Full Text PDF

Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!