Curr Vasc Pharmacol
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
Published: January 2004
Fibroblast growth factor 2 (FGF2) is expressed ubiquitously in mesodermal and neuroectodermal cells. Human FGF2 occurs in isoforms translated from a common mRNA by alternative use of AUG (low-molecular weight isoforms) and CUG (high-molecular weight isoforms) start codons. Whereas the high-molecular weight isoforms function in an intracrine manner, the low-molecular weight isoform functions as autocrine, paracrine, and intracrine ligands. FGF2's signals are mediated by a family of high- and low-affinity receptors. The nuclear localization of FGF2 appears to be essential for its mitogenic effects with different isoforms localizing in different nuclear substructures. By regulating the transcription or activity of multiple other genes, FGF2 plays an important role in proliferation, differentiation, and survival of cells of almost all organ systems. Its potent angiogenic effects observed in tissue culture models and healthy animals have prompted clinical trials testing effects of FGF2 protein or genetic material on ischemic tissues. Unfortunately, FGF2-mediated therapeutic angiogenesis has yielded inconclusive results. One possible reason is that single-gene therapy is not sufficient to support the numerous effectors required to generate mature vessels assembled by multiple cells, including pericytes, smooth muscle cells, and endothelial cell subtypes. Another possible reason is that potentially negative effects of dyslipidemia, a common finding in patients with macro- and microvascular disease, on gene therapy have not been taken into account. We have demonstrated that electronegative low-density lipoprotein (LDL) from hypercholesterolemic human plasma downregulates FGF2 by both transcriptional and posttranscriptional mechanisms. In our models, FGF2 downregulation results in angiostasis and endothelial cell apoptosis. Deprivation of endogenous FGF2 may lead to dysregulation of the activities of other survival and angiogenesis-related genes. Delineation of the molecular mechanisms modulating the expression and actions of FGF2 may provide the basis for novel therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1570161043476500 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China.
Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities.
View Article and Find Full Text PDFJ Vet Res
December 2024
Institute of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland.
Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.
View Article and Find Full Text PDFInsects
December 2024
Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico.
In the search for effective strategies to control the Colorado Potato Beetle, RNA interference technology has emerged as a promising method due to its capacity to suppress genes selectively. Factors such as the target gene and double-stranded RNA (dsRNA) length are critical for optimizing gene silencing efficiency. In this study, we designed and synthesized in vitro dsRNAs of varying lengths targeting the gene, which encodes the AChE1 isoform of acetylcholinesterase in the beetle.
View Article and Find Full Text PDFTropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.