Prostaglandin I2 (PGI2, prostacyclin), an eicosanoid of the cyclooxygenase pathway, causes relaxation of vascular smooth muscle in most blood vessels and inhibits platelet aggregation. PGI2 and its stable analogues activate a specific cell-surface receptor (IP receptor, IPR), which is coupled to adenylyl cyclase through G(s)-protein. Elevation of 3': 5'-cyclic monophosphate (cyclic AMP, cAMP) levels has been considered to be a key cellular event to trigger blood vessel relaxation by IP agonists; however, its exclusive role has been recently challenged. Downstream effectors of the IP agonist metabolic cascade are plasma membrane K+ channels that upon activation would cause smooth muscle cell hyperpolarization and relaxation. The K+ channel candidates include ATP-sensitive K+ (KATP) channel and large conductance, Ca2+ -activated K+ (MaxiK, BK) channel. The contribution of each K+ channel subtype would be governed by their relative expression and/or particular co-localization with different proteins of the IPR signaling cascade in each vascular bed. Scrutiny of the cellular mechanisms underlying IPR-activated vascular relaxation of a large conduit artery revealed that relaxation by an IP agonist, beraprost, is elicited through cAMP-independent pathway as well as by a cAMP-dependent route. Both mechanisms include activation of MaxiK channels. The cAMP-independent vasorelaxant mechanism is partly attributed to a direct activation of MaxiK channel by G(s)-protein. In this review article, we discuss cAMP-dependent and -independent mechanisms by which IPR stimulation activates MaxiK channel. Our recent work demonstrates a functional tight coupling between IPR and MaxiK channel through a cAMP-independent, G(s)-protein mediated mechanism(s) in vascular smooth muscle.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568016043356273DOI Listing

Publication Analysis

Top Keywords

maxik channel
20
smooth muscle
12
vascular relaxation
8
channel
8
vascular smooth
8
activation maxik
8
relaxation
6
maxik
6
mechanisms
5
vascular
5

Similar Publications

Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.

View Article and Find Full Text PDF

The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes.

View Article and Find Full Text PDF

Toluene is a cerebral artery constrictor acting via BK channels.

Neuropharmacology

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA. Electronic address:

Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown.

View Article and Find Full Text PDF

K secretion in the distal nephron has a critical role in K homeostasis and is the primary route by which K is lost from the body. Renal K secretion is enhanced by increases in dietary K intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K secretion (FIKS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!