Severe malaria-associated anemia and cerebral malaria are life-threatening complications of Plasmodium falciparum infection. Red blood cell (RBC) complement regulatory proteins (CRPs) have been implicated in the pathogenesis of both. We sought to determine whether there are age-related changes in the expression of CRPs that could explain the susceptibility to severe malaria-associated anemia in young children and the susceptibility to cerebral malaria in older children and adults. In cross-sectional surveys in malaria-endemic and -nonendemic areas of Kenya and in Reims, France, the level of RBC CRPs was lowest in young children and increased into adulthood. In case-control studies, patients with cerebral malaria and matched control subjects had higher levels of RBC CRPs than did patients with severe anemia and matched control subjects, especially during convalescence. We conclude that RBC CRP levels vary with age and that the lower levels of these proteins in young children in areas of high transmission, such as western Kenya, may place these children at greater risk of severe malaria-associated anemia than cerebral malaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/423140 | DOI Listing |
Trends Parasitol
January 2025
Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.
View Article and Find Full Text PDFSci Rep
December 2024
Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand.
Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Internal Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey.
Cureus
December 2024
Neurology, Adventist Health White Memorial, Los Angeles, USA.
malaria affects millions of people in certain regions of the world, with neurological involvement and/or cerebral malaria as potential manifestations. Brain magnetic resonance imaging (MRI) abnormalities have been well-documented in cerebral malaria. However, MRI abnormalities in non-cerebral malaria, especially in neurologically asymptomatic patients, are not well understood and have been less frequently reported, especially in non-endemic regions.
View Article and Find Full Text PDFBiomed Khim
December 2024
Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!