The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle conjugates were subjected to in vitro selections for protein affinity. The identity of a single macrocycle possessing known target protein affinity was inferred through the sequence of the amplified DNA template surviving the selection. This work represents the translation, selection, and amplification of libraries of nucleic acids encoding synthetic small molecules rather than biological macromolecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814051 | PMC |
http://dx.doi.org/10.1126/science.1102629 | DOI Listing |
Small Methods
January 2025
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago. Electronic address:
Pollution is a major global concern affecting biodiversity, particularly of freshwater species. Populations have developed mechanisms to deal with pollution, such as the chemical defensome, which is a set of genes involved in maintaining internal stability. Pollution significantly affects the Maipo River basin in Chile.
View Article and Find Full Text PDFJACS Au
October 2024
Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland.
DNA-encoded libraries connect the phenotypes of synthetic molecules to a DNA barcode; however, most libraries do not tap into the potential of Darwinian evolution. Herein, we report a DNA-templated synthesis (DTS) architecture to make peptides that are stabilized into α-helical conformations via head-to-tail supramolecular cyclization. Using a pilot library targeting MDM2, we show that repeated screening can amplify a binder from the lowest abundance in the library to a ranking that correlates to binding affinity.
View Article and Find Full Text PDFJACS Au
June 2024
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Hepatitis B virus (HBV) infection remains a major global health concern, necessitating the development of sensitive and reliable diagnostic methods. In this study, we propose a novel approach to enhance the sensitivity of HBV DNA detection by leveraging a concentration imbalance-driven DNA circuit (CIDDC) as an operational amplifier, coupled with a hybridization-responsive DNA-templated silver nanocluster (DNA-AgNCs) nanoprobe named Q·C6-AgNCs. The CIDDC system effectively converts and amplifies the input HBV DNA into an enriched generic single-stranded DNA output, which subsequently triggers the fluorescence of the DNA-AgNCs reporter upon hybridization, generating a measurable signal for detection.
View Article and Find Full Text PDFNano Lett
December 2023
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Study of the conformational and mechanical behaviors of biomolecular assemblies is vital to the rational design and realization of artificial molecular architectures with biologically relevant functionality. Here, we revealed DNA-modulated and mechanoresponsive excitonic couplings between organic chromophores and verified strong correlations between the excitonic chiroptical responses and the conformational and mechanical states of DNA self-assemblies irrespective of fluorescence background interference. Besides, the excitonic chiroptical effect allowed sensitive monitoring of DNA self-assembled nanostructures due to small molecule bindings or DNA strand displacement reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!