Retinal photoreceptors and retinal pigment epithelial (RPE) cells are among the cell types that are sensitive to poisoning with methanol and its toxic metabolite formic acid. When exposed to formic acid in vitro, cultured cell lines from photoreceptors (661W) and the RPE (ARPE-19) were previously shown to accumulate similar levels of formate, but cytotoxic effects are greater in 661W cells. Here catalase and glutathione were analyzed in the two retinal cell lines to determine whether differences in these antioxidant systems contributed to cell-type-specific differences in cytotoxicity. Cells were exposed to formic acid (pH 6.8) in the culture medium in the presence or absence of a catalase activity inhibitor, 3-amino-1,2,4-triazole (AT), or a glutathione synthesis inhibitor, buthionine L-sulfoximine (BSO). Catalase protein, catalase enzyme activity, glutathione, glutathione peroxidase activity, cellular ATP, and cytotoxicity were analyzed. Compared to ARPE-19, 661W cells show lower antioxidant levels: 50% less glutathione, glutathione peroxidase and catalase protein, and 90% less catalase enzyme activity. In both cell types, formic acid treatment produced decreases in glutathione and glutathione peroxidase, and glutathione synthesis inhibition with BSO produced greater ATP depletion and cytotoxicity than formic acid treatment alone. In contrast, formate exposure produced decreases in catalase protein and activity in 661W cells, but increases in activity in ARPE-19. Treatment with the catalase inhibitor AT increased the formate sensitivity only of the ARPE-19 cells. ARPE-19 cells, therefore, may be less susceptible to formate toxicity due to higher levels of antioxidants, especially catalase, which increases on formate treatment and which has a significant cytoprotective effect for the RPE cell line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfh256 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730030 China; Department of Pharmacy, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030 China. Electronic address:
Objective: To develop a rapid, convenient, accurate, and low-residual-effect ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of polymyxin B sulfate and colistin sulfate in the blood of patients with multidrug-resistant bacterial infections, as well as caspofungin acetate in the blood of patients with fungal infections, thus facilitating the rational use of antibiotics in clinical applications.
Methods: All analytes were diluted with 0.2 % aqueous formic acid, and plasma proteins were precipitated using acetonitrile.
Am J Transl Res
December 2024
Department of Pharmacy, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China.
Objectives: The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the detection of osimertinib in rat plasma, lung and brain tissues.
Methods: Forty-eight rats were randomly divided into an experimental group (receiving osimertinib at doses of 5, 8, and 10 mg/kg) and a control group. After continuous intragastric administration for 15 days, samples of blood, lung, and brain tissue were collected.
J Chromatogr Sci
January 2025
Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.
An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department for Chemistry, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark.
A new Ru(II) complex featuring a novel amino-di(N-heterocyclic carbene) CNC pincer ligand, CNC-RuCl(CO) (Ru-1), has been developed and characterised in depth. Ru-1 forms an efficient and durable catalytic formic acid dehydrogenation system in combination with the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM PO(OEt)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!