The Na(+)/H(+) exchanger (NHE) and/or the Na(+)/HCO(3)(-) cotransporter (NBC) were blocked during ischemia in isolated rat hearts. Intracellular Na(+) concentration ([Na(+)](i)), intracellular pH (pH(i)), and energy-related phosphates were measured by using simultaneous (23)Na and (31)P NMR spectroscopy. Hearts were subjected to 30 min of global ischemia and 30 min of reperfusion. Cariporide (3 microM) or HCO(3)(-)-free HEPES buffer was used, respectively, to block NHE, NBC, or both. End-ischemic [Na(+)](i) was 320 +/- 18% of baseline in HCO(3)(-)-perfused, untreated hearts, 184 +/- 6% of baseline when NHE was blocked, 253 +/- 19% of baseline when NBC was blocked, and 154 +/- 6% of baseline when both NHE and NBC were blocked. End-ischemic pH(i) was 6.09 +/- 0.06 in HCO(3)(-)-perfused, untreated hearts, 5.85 +/- 0.02 when NHE was blocked, 5.81 +/- 0.05 when NBC was blocked, and 5.70 +/- 0.01 when both NHE and NBC were blocked. NHE blockade was cardioprotective, but NBC blockade and combined blockade were not, the latter likely due to a reduction in coronary flow, because omission of HCO(3)(-) under conditions of NHE blockade severely impaired coronary flow. Combined blockade of NHE and NBC conserved intracellular H(+) load during reperfusion and led to massive Na(+) influx when blockades were lifted. Without blockade, both NHE and NBC mediate acid-equivalent efflux in exchange for Na(+) influx during ischemia, NHE much more than NBC. Blockade of either one does not affect the other.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01102.2003DOI Listing

Publication Analysis

Top Keywords

nhe nbc
24
nbc blocked
20
nhe
11
nbc
10
isolated rat
8
rat hearts
8
+/-
8
hco3--perfused untreated
8
untreated hearts
8
+/- baseline
8

Similar Publications

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis.

View Article and Find Full Text PDF

Key Points: According to the metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO cotransporter NBCe1-A speeds transport by regenerating/consuming . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the metabolon hypothesis.

View Article and Find Full Text PDF

Functional effects of urotensin-II on intracellular pH regulators in human radial artery smooth muscle cells.

Peptides

April 2020

Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:

The regulation of intracellular pH (pH) plays a vital role in various cellular functions. We previously demonstrated that three different acid extruders, the Na-H exchanger (NHE), Na-HCO co-transporter (NBC) and H-linked monocarboxylate transporter (MCT), functioned together in cultured human radial artery smooth muscle cells (HRASMCs). However, the functions of acid-loading transporters in HRASMCs remain poorly understood.

View Article and Find Full Text PDF

The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration.

Eur J Pharmacol

November 2019

U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.

Several studies have reported that CORM-3, a water-soluble carbon monoxide releasing molecule, elicits cardioprotection against myocardial infarction but the mechanism remains to be investigated. Numerous reports indicate that inhibition of pH regulators, the Na/H exchanger (NHE) and Na/HCO symporter (NBC), protect cardiomyocytes from hypoxia/reoxygenation injury by delaying the intracellular pH (pHi) recovery at reperfusion. Our goal was to explore whether CORM-3-mediated cytoprotection involves the modulation of pH regulation.

View Article and Find Full Text PDF

Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na /H exchangers (NHE), Na /Ca exchangers (NCX), Na -K -Cl cotransporters (NKCC), and Na -HCO cotransporters (NBC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!