Microscopic examination of musculus gastrocnemius biopsies was made in four cases of sporadic lateral amyotrophic sclerosis (LAS). The validity of the clinical diagnosis was confirmed by detected neurotrophic atrophy of the muscular fibers typical for LAS. Electron microscopic study revealed virus-like inclusions 200-450 nm in size in sarcoplasm of myocytes of all the patients. The inclusions consist of lined cells of hexagonal shape at the distance of 37-41 nm from each other. The inclusions resemble enteroviruses but are not identical to them both by size and structure of their elements. There were also specific ultrastructural changes of myocytes corresponding to viral infection. The above virus-like inclusions should be considered as specific structures formed as a result of metabolic shifts caused by productive action on the cell of infective or unknown factor.
Download full-text PDF |
Source |
---|
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.
View Article and Find Full Text PDFNeurol Sci
January 2025
Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar.
Objective: Tofersen, an antisense oligonucleotide, has recently received FDA and EMA approval for treating amyotrophic lateral sclerosis (ALS) in adults with SOD1 gene mutations. This systematic review and meta-analysis synthesized evidence on tofersen's safety and efficacy in patients with SOD1-related ALS.
Methods: A comprehensive search of three databases was conducted from inception through October 2024.
Subcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!