Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration.

Water Sci Technol

Kiwa Water Research Ltd, 3430 BB Nieuwegein, the Netherlands.

Published: October 2004

AI Article Synopsis

  • The research examined how effective slow sand filters (SSF) are at removing viruses, bacteria, and Cryptosporidium oocysts, using data from full-scale systems and lab experiments.
  • DEC for viruses was found to be between 1.5-2 log10, with better removal of E. coli (2-3 log10) compared to Campylobacter.
  • While lab tests showed high removal rates for specific bacteria and oocysts, full-scale filters were less efficient, likely due to continuous loading, and other factors like the schmutzdecke (a biofilm layer) improved microorganism removal through mechanisms like straining and adsorption.

Article Abstract

The decimal elimination capacity (DEC) of slow sand filters (SSF) for viruses, bacteria and oocysts of Cryptosporidium has been assessed from full-scale data and pilot plant and laboratory experiments. DEC for viruses calculated from experimental data with MS2-bacteriophages in the pilot plant filters was 1.5-2 log10. E. coli and thermotolerant coliforms (Coli44) were removed at full-scale and in the pilot plant with 2-3 log10. At full-scale, Campylobacter bacteria removal was 1 log10 more than removal of Coli44, which indicated that Coli44 was a conservative surrogate for these pathogenic bacteria. Laboratory experiments with sand columns showed 2-3 and >5-6 log10 removal of spiked spores of sulphite-reducing clostridia (SSRC; C. perfringens) and oocysts of Cryptosporidium respectively. Consequently, SSRC was not a good surrogate to quantify oocyst removal by SSF. Removal of indigenous SSRC by full-scale filters was less efficient than observed in the laboratory columns, probably due to continuous loading of these filter beds with spores, accumulation and retarded transport. It remains to be investigated if this also applies to oocyst removal by SSF. The results additionally showed that the schmutzdecke and accumulation of (in)organic charged compounds in the sand increased the elimination of microorganisms. Removal of the schmutzdecke reduced DEC for bacteria by +/-2 log10, but did not affect removal of phages. This clearly indicated that, besides biological activity, both straining and adsorption were important removal mechanisms in the filter bed for microorganisms larger than viruses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pilot plant
12
removal
9
viruses bacteria
8
slow sand
8
oocysts cryptosporidium
8
laboratory experiments
8
log10 removal
8
oocyst removal
8
removal ssf
8
bacteria
5

Similar Publications

Investigation of carbon dioxide for scale control in reverse osmosis systems.

J Environ Manage

December 2024

Air Liquide, Brussels, Belgium. Electronic address:

The operation of a reverse osmosis (RO) system is often severely hindered by the deposition of inorganic scales such as calcium carbonate on the membrane surface. Mitigation of this scaling phenomenon requires suitable pH control strategies, with the use of strong mineral acids (e.g.

View Article and Find Full Text PDF

Waste generated during asbestos manufacturing contains substantial quantities of iron, nickel, magnesium, and silicon. The existing techniques for processing chrysotile-asbestos waste (CAW) cannot fully recover these elements. Therefore this paper presents a hydrometallurgical method for processing the CAW of the Zhitikara deposit in the Kostanay region of Kazakhstan.

View Article and Find Full Text PDF

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Background: Skin aging is a multifaceted condition marked by the development of wrinkles, reduced suppleness, and uneven pigmentation. Both endogenous and exogenous factors contribute to skin aging. Studies have examined the possible anti-aging advantages of horsetail and soybean extracts, which are abundant in antioxidants.

View Article and Find Full Text PDF

The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!