A case of spontaneous bone regeneration after mandibulectomy is presented. The patient was young and had a mandibular resection performed for a large fibroma. Only one of the condyles was preserved. Partial preservation of the periosteum may play an important role in rapid bone regeneration. In this case bone regeneration occurred only in mandibular regions where the periosteum could be preserved.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bone regeneration
16
spontaneous bone
8
partial spontaneous
4
bone
4
regeneration
4
regeneration subsequent
4
subsequent mandibulectomy
4
mandibulectomy case
4
case spontaneous
4
regeneration mandibulectomy
4

Similar Publications

Effect of human amniotic membrane on the consolidation during bone lengthening by distraction: Experimental study in rabbits.

J Orthop Sci

January 2025

Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Faculty of Medicine, Sfax, Tunisia; Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia.

Objective: This study aimed to assess the effect of implantation of fresh human amniotic membranes (HAM) on bone consolidation during distraction bone lengthening.

Methods: Ten New Zealand white rabbits were used in this study. For each rabbit, we performed a diaphyseal tibial osteotomy after installing a single-plane distraction external fixator.

View Article and Find Full Text PDF

With the advancement of medical technology, the utilization of bioactive materials to promote bone repair has emerged as a significant research area. Hydrogels, as biomaterials, play a crucial role in bone tissue engineering. These hydrogels exhibit high biocompatibility, providing in vivo ecological conditions conducive to cell survival, and offer substantial advantages in facilitating bone repair.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!