ATP opens ionotropic P2X channels through a process that is poorly understood. We made an array of mutant rat P2X2 channels containing unique alanine substitutions in the transmembrane segments with the goal of identifying possible secondary structure and mapping gating domains in the pore. Alteration of channel function was measured as a change in ATP potency, 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) efficacy, and deactivation kinetics. Four mutants (V45A, Y47A, V51A, and D349A) failed to respond to ATP. Seven (H33A, Q37A, I40A, L41A, Y43A, F44A, and I50A) of 22 mutations in the first transmembrane segment (TM1) produced channels with altered potencies, and two mutants (Y43A and F44A) were active in the absence of agonist. The pattern of hits was consistent with a helical secondary structure. In contrast, nine (I328A, P329A, N333A, L338A, T339A, S340A, G342A, G344A, and S345A) of 24 mutations in the second transmembrane segment (TM2) resulted in a change in potency, but no regular pattern of impact was apparent. Many of the same mutations that altered ATP potency also changed the relative efficacy of the partial agonist BzATP. Together, these data suggest that both TM1 and TM2 participate in the conformational changes that occur during receptor activation and help to define domains involved in conformational switching within or near the pore.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729769 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1423-04.2004 | DOI Listing |
Adv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFCurr Opin Chem Biol
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India; Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India. Electronic address:
Animal venom contains ion channel-targeting peptide toxins that inflict paralysis or pain. The high specificity and potency of these toxins for their target ion channels provides enticing opportunities for their deployment as tools in channel biology. Mechanistic studies on toxin-mediated ion channel modulation have yielded landmark breakthroughs in our understanding of channel architectures and gating mechanisms.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
Spiking Neural Networks (SNNs) are at the forefront of computational neuroscience, emulating the nuanced dynamics of biological systems. In the realm of SNN training methods, the conversion from ANNs to SNNs has generated significant interest due to its potential for creating energy-efficient and biologically plausible models. However, existing conversion methods often require long time-steps to ensure that the converted SNNs achieve performance comparable to the original ANNs.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!