Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d.

J Bacteriol

Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín. Profesor Albareda 1, 18008 Granada, Spain.

Published: September 2004

An approach originally designed to identify functional origins of conjugative transfer (oriT or mob) in a bacterial genome (J. A. Herrera-Cervera, J. M. Sanjuán-Pinilla, J. Olivares, and J. Sanjuán, J. Bacteriol. 180:4583-4590, 1998) was modified to improve its reliability and prevent selection of undesired false mob clones. By following this modified approach, we were able to identify two functional mob regions in the genome of Rhizobium etli CFN42. One corresponds to the recently characterized transfer region of the nonsymbiotic, self-transmissible plasmid pRetCFN42a (C. Tun-Garrido, P. Bustos, V. González, and S. Brom, J. Bacteriol. 185:1681-1692, 2003), whereas the second mob region belongs to the symbiotic plasmid pRetCFN42d. The new transfer region identified contains a putative oriT and a typical conjugative (tra) gene cluster organization. Although pRetCFN42d had not previously been shown to be self-transmissible, mobilization of cosmids containing this tra region required the presence of a wild-type pRetCFN42d in the donor cell; the presence of multiple copies of this mob region in CFN42 also promoted conjugal transfer of the Sym plasmid pRetCFN42d. The overexpression of a small open reading frame, named yp028, located downstream of the putative relaxase gene traA, appeared to be responsible for promoting the conjugal transfer of the R. etli pSym under laboratory conditions. This yp028-dependent conjugal transfer required a wild-type pRetCFN42d traA gene. Our results suggest for the first time that the R. etli symbiotic plasmid is self-transmissible and that its transfer is subject to regulation. In wild-type CFN42, pRetCFN42d tra gene expression appears to be insufficient to promote plasmid transfer under standard laboratory conditions; gene yp028 may play some role in the activation of conjugal transfer in response to as-yet-unknown environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516833PMC
http://dx.doi.org/10.1128/JB.186.17.5753-5761.2004DOI Listing

Publication Analysis

Top Keywords

conjugal transfer
16
symbiotic plasmid
12
plasmid pretcfn42d
12
transfer
9
functional mob
8
mob regions
8
rhizobium etli
8
identify functional
8
transfer region
8
mob region
8

Similar Publications

The generation of interlayer charge transfer excitons upon photoexcitation is strongly desirable for two-dimensional (2D) materials stacked through van der Waals interactions. In this work, we investigate photoinduced charge transfer in silicanes (SiH) with three typical stackings. A concept of the regional natural hole orbital and its conjugated particle orbital is developed to characterize excited states in solids.

View Article and Find Full Text PDF

A Cu-salen-based conjugated microporous polymer catalyst for -formylation of CO under mild conditions.

Chem Commun (Camb)

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.

A heterogeneous salen-based conjugated microporous polymer catalyst (CMP@Cu-salen) is prepared by a one-pot method for -formylation of amines with CO. The uniformly dispersed Cu-salen site and porous structure facilitates the enrichment of CO and transfer of substrates and the transformation. Our CMP@Cu-salen shows excellent catalytic performance (conversion: 99%, selectivity: 90%) for formylation of -methylaniline under mild conditions (0.

View Article and Find Full Text PDF

Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin.

bioRxiv

December 2024

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.

Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.

View Article and Find Full Text PDF

Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.

View Article and Find Full Text PDF

Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!