Abnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine line carrying approximately 25 extra copies of a complete hDMPK gene with all exons and an intact promoter region (Tg26-hDMPK), overexpression of mRNA and protein transgene products in cardiac, skeletal and smooth muscles resulted in deficient exercise endurance, an integrative index of muscle systems underperformance. In contrast to age-matched (11-15 months) wild-type controls, hearts from Tg26-hDMPK developed cardiomyopathic remodeling with myocardial hypertrophy, myocyte disarray and interstitial fibrosis. Hypertrophic cardiomyopathy was associated with a propensity for dysrhythmia and characterized by overt intracellular calcium overload promoting nuclear translocation of transcription factors responsible for maladaptive gene reprogramming. Skeletal muscles in distal limbs of Tg26-hDMPK showed myopathy with myotonic discharges coupled with deficit in sarcolemmal chloride channels, required regulators of hyperexcitability. Fiber degeneration in Tg26-hDMPK resulted in sarcomeric disorganization, centralization of nuclei and tubular aggregation. Moreover, the reduced blood pressure in Tg26-hDMPK indicated deficient arterial smooth muscle tone. Thus, the cumulative stress induced by permanent overexpression of hDMPK gene products translates into an increased risk for workload intolerance, hypertrophic cardiomyopathy with dysrhythmia, myotonic myopathy and hypotension, all distinctive muscle traits of DM1. Proper expression of hDMPK is, therefore, mandatory in supporting the integral balance among cytoarchitectural infrastructure, ion-homeostasis and viability control in various muscle cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh266DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
12
myotonic dystrophy
12
hdmpk gene
12
myotonic myopathy
8
myopathy hypotension
8
protein kinase
8
gene products
8
myotonic
6
tg26-hdmpk
5
transgenic overexpression
4

Similar Publications

Background: There is a shortage of patients with hypertrophic cardiomyopathy (HCM) with concurrent coronary artery disease (CAD), and the influence of CAD on the prognosis of patients with HCM is uncertain. This real-world cohort study was conducted to evaluate the prognosis of patients with patients with CAD.

Methods: This cohort study of patients with HCM was conducted from May 2003 to September 2021.

View Article and Find Full Text PDF

Pathogenic genes and clinical prognosis in hypertrophic cardiomyopathy.

World J Cardiol

January 2025

Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy. It is one of the chief causes of sudden cardiac death in younger people and athletes. Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.

View Article and Find Full Text PDF

Author's Reply to Impact of Mavacamten on Atrial Fibrillation in Patients with Obstructive Hypertrophic Cardiomyopathy.

Heart Rhythm

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!