A detailed comparison between native chlorite dismutase from Ideonella dechloratans, and the recombinant version of the protein produced in Escherichia coli, suggests the presence of a covalent modification in the native enzyme. Although the native and recombinant N- and C-terminal sequences are identical, the enzymes display different electrophoretic mobilities, and produce different peptide maps upon digestion with trypsin and separation of fragments using capillary electrophoresis. Comparison of MALDI mass spectra of tryptic peptides from the native and recombinant enzymes suggests two locations for modification in the native protein. Mass spectrometric analysis of isolated peptides from a tryptic digest of the native enzyme identifies a possible cross-linked dipeptide, suggesting an intrachain cross-link in the parent protein. Spectrophotometric titration of the native enzyme in the denatured state reveals two titrating components absorbing at 295 nm, suggesting the presence of about one tyrosine residue per subunit with an anomalously low pK(a). The EPR spectrum for the recombinant enzyme is different from that of the native enzyme, and contains a substantial contribution of a low-spin species with the characteristics of bis-histidine coordination. These results are discussed in terms of a covalent cross-link between a histidine and a tyrosine sidechain, similar to those found in other heme enzymes operating under highly oxidizing conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0014-2956.2004.04290.x | DOI Listing |
Nat Commun
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application. However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here, we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-assisted DE workflow that leverages uncertainty quantification to explore the search space of proteins more efficiently than current DE methods.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFChemistry
January 2025
Ulm University: Universitat Ulm, Organic Chemistry III, Albert-Einstein-Allee 11, 89081, Ulm, GERMANY.
The efficiency of kinase inhibiting cancer therapeutics is often limited by their poor solubility in water. PEGylation is one possible strategy to improve the solubility of the drug, however, means to cleave these after reaching the target is important to make use of the therapeutic effects of the native drug. Moreover, the length of the PEG chains will have an effect on the solubility and binding.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Columbus, OH, USA.
Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!