Acetyl-coenzyme A synthetase (AMP forming).

Cell Mol Life Sci

Department of Bacteriology, University of Wisconsin-Madison, 264 Enzyme Institute, 1710 University Avenue, 53726-4087, Madison, Wisconsin 53726-4087, USA.

Published: August 2004

Acetyl-coenzyme A synthetase (AMP forming; Acs) is an enzyme whose activity is central to the metabolism of prokaryotic and eukaryotic cells. The physiological role of this enzyme is to activate acetate to acetyl-coenzyme A (Ac-CoA). The importance of Acs has been recognized for decades, since it provides the cell the two-carbon metabolite used in many anabolic and energy generation processes. In the last decade researchers have learned how carefully the cell monitors the synthesis and activity of this enzyme. In eukaryotes and prokaryotes, complex regulatory systems control acs gene expression as a function carbon flux, with a second layer of regulation exerted posttranslationally by the NAD+/sirtuin-dependent protein acetylation/deacetylation system. Recent structural work provides snapshots of the dramatic conformational changes Acs undergoes during catalysis. Future work on the regulation of acs gene expression will expand our understanding of metabolic integration, while structure/function studies will reveal more details of the function of this splendid molecular machine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138584PMC
http://dx.doi.org/10.1007/s00018-004-3448-xDOI Listing

Publication Analysis

Top Keywords

acetyl-coenzyme synthetase
8
synthetase amp
8
amp forming
8
acs gene
8
gene expression
8
acs
5
forming acetyl-coenzyme
4
forming acs
4
acs enzyme
4
enzyme activity
4

Similar Publications

Ergosterol alleviates hepatic steatosis and insulin resistance via promoting fatty acid β-oxidation by activating mitochondrial ACSL1.

Cell Rep

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:

Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.

View Article and Find Full Text PDF

Winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) has been considered the most common and troublesome weed in wheat fields of Iran. The widespread and continuous use of herbicides has led to the emergence and development of resistant biotypes in A.

View Article and Find Full Text PDF

Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage.

Cell Mol Life Sci

December 2024

Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.

Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis.

View Article and Find Full Text PDF

Hydrolysis of the acetyl-CoA allosteric activator by Staphylococcus aureus pyruvate carboxylase.

Arch Biochem Biophys

February 2025

Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881, USA. Electronic address:

Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.

View Article and Find Full Text PDF

Role of biotin carboxyl carrier protein subunit 2 (BCCP2) in resistance to multiple stresses in Arabidopsis thaliana.

Biochem Biophys Res Commun

January 2025

Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China. Electronic address:

Abiotic stresses, including drought, salinity, and temperature extremes, are serious constraints to plant growth and agricultural development. These stresses that plants face in nature are often multiple and complex. Biotin carboxyl carrier protein subunit 2 (BCCP2) is one of the two subunits of biotin carboxyl carrier protein, which is a functional subunit of acetyl coenzyme A carboxylase, primarily studied for its role in fatty acid synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!