Phosphinic peptides as zinc metalloproteinase inhibitors.

Cell Mol Life Sci

Départment d'Ingénierie et d'Etudes des Protéines (DIEP), CEA, CE-Saclay, 91191, Gif/Yvette Cedex, France.

Published: August 2004

Solid-phase synthesis of phosphinic peptides was introduced 10 years ago. A major application of this chemistry has been the development of potent synthetic inhibitors of zinc metalloproteases. Specific properties of the inhibitors produced in recent years are reviewed, supporting the notion that phosphinic pseudo-peptides are useful tools for studying the structural and functional biology of zinc proteases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138626PMC
http://dx.doi.org/10.1007/s00018-004-4050-yDOI Listing

Publication Analysis

Top Keywords

phosphinic peptides
8
peptides zinc
4
zinc metalloproteinase
4
metalloproteinase inhibitors
4
inhibitors solid-phase
4
solid-phase synthesis
4
synthesis phosphinic
4
peptides introduced
4
introduced years
4
years ago
4

Similar Publications

Adipose tissue (AT) is a complex, multifunctional endocrine organ that plays a significant role in animal evolution and human disease. Profiling of the proteome, or the set of proteins produced by a cell or tissue at a given time, can be used to explore the myriad functions of adipose tissue and understand its role in health and disease. The main challenges of adipose tissue proteomics include the high lipid and low protein content of the tissue and association of many proteins with lipid droplets.

View Article and Find Full Text PDF

Decarboxylative Coupling of Ketoacids with Allylic Acetates.

Org Lett

December 2024

College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.

We developed a novel, metal-free catalytic system for synthesizing a broad range of itaconates using α-ketoacids and allylic acetate. This method, leveraging phosphine and Mes-Acr(BF) catalysts, has proven versatile, enabling the efficient itaconation of peptides, the synthesis of bioactive itaconates, and the preparation of an itaconate-based bio-orthogonal probe.

View Article and Find Full Text PDF

Peptide-Guided Assembly of Silver Nanoparticles for the Diagnosis of HER2-Positive Breast Cancer.

Anal Chem

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.

Peptide-engineered nanoparticles have great potential for biomedical research and application. In this work, we have designed and fabricated an electrochemical biosensor based on peptide-guided assembly of silver nanoparticles (AgNPs), in which a peptide is endowed with dual functions to recognize target and guide assembly of AgNPs. As a proof of concept, the performance of this biosensor is validated by quantifying human epidermal growth factor receptor 2 (HER2) protein.

View Article and Find Full Text PDF

An efficient Mn(III)-promoted phosphorylation of dehydroalanine (Dha) has been developed to give unusual α-amino acids bearing phosphonates/phosphine oxides and β-vinyl phosphonates/phosphinates depending on N-protection of amino acid. N,N-diprotected dehydroalanine reacted with H-phosphonates and H-phosphine oxides to give structurally diverse phosphorylated α-amino acids through conjugate addition of phosphorous radical generated by Mn(OAc).2HO.

View Article and Find Full Text PDF

Cysteine and glutathione can be applied as therapeutic targets in civilization diseases such as diabetes mellitus and cancers. On the other hand, an elevated concentration of homocysteine, and its metabolites such as homocysteine thiolactone and Nɛ-homocysteinyllysine result in health problems and has been indicated as an independent risk factor for cardiovascular disease and accelerated atherosclerosis. This work describes the first simplified HPLC-UV method that allows simultaneous determination of Nɛ-homocysteinyllysine isopeptide, cysteine, glutathione and homocysteine in human plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!