Beneficial effect of retinoic acid on the outcome of experimental acute renal failure.

Nephrol Dial Transplant

Department of Nephrology and Pathology, Centro Medico La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Published: October 2004

Background: Retinoic acid (RA) exerts beneficial effects on vascular remodelling and experimental nephritis, and plays a role in kidney development. Pathological changes caused by acute renal failure (ARF) result in high mortality. We determined whether RA ameliorates ARF-induced pathology caused by potassium dichromate (PD).

Methods: Adult Wistar female rats (210-250 g) were randomly allocated to four groups: (i) an ARF group that received PD [15 mg/kg body weight (bw), single dose subcutaneously]; (ii) a group that received PD plus RA (1 mg/kg bw) beginning at 5 days before PD and that continued for 14 additional days; (iii) a group that received PD plus thyroxine (T(4); 8 micro g/100 g bw) with RA; and (iv) a group that received only the vehicle for PD (saline solution). We evaluated functional, biochemical and morphological characteristics of the kidneys.

Results: PD-induced alterations in serum creatinine, creatinine clearance (C(cr)) and fractional excretion of sodium (FeNa) were less severe when rats received RA. PD increased lipoperoxidation and this alteration was partially blocked by RA. Animals undergoing ARF showed severe histological injury (brush border loss, acidophilia, oedema, pyknosis, karyorhexis, cell detachment and disruption of the basement membrane). These alterations were less severe in RA-treated rats, indicating a protective effect on functional and morphological alterations. Alterations in urinary sediment were reduced by RA. The simultaneous administration of T(4) with RA did not produce additional protection.

Conclusion: RA exerted beneficial effects on the duration and severity of renal damage induced by PD in a model of renal failure resembling ARF in humans. The protective effect of RA may be mediated by diminished lipoperoxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfh400DOI Listing

Publication Analysis

Top Keywords

group received
16
renal failure
12
retinoic acid
8
acute renal
8
beneficial effects
8
received
5
beneficial retinoic
4
acid outcome
4
outcome experimental
4
experimental acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!