In order to investigate whether covalent histone modifications may be involved in early embryonic reprogramming events, changes in global levels of a series of histone tail modifications were studied during oocyte maturation and pre-implantation mouse development using indirect immunofluorescence and scanning confocal microscopy. Results showed that histone modifications could be classified into two strikingly distinct categories. The first contains stable 'epigenetic' marks such as histone H3 lysine 9 methylation [Me(Lys9)H3], histone H3 lysine 4 methylation [Me(Lys4)H3] and histone H4/H2A serine 1 phosphorylation [Ph(Ser1)H4/H2A]. The second group contains dynamic and reversible marks and includes hyperacetylated histone H4, histone H3 arginine 17 methylation [Me(Arg17)H3] and histone H4 arginine 3 methylation [Me(Arg3)H4]). Our results also showed that removal of these marks in eggs and early embryos occurs during metaphase suggesting that the enzymes responsible for the loss of these modifications are probably cytoplasmic in nature. Finally, we provide data demonstrating that treatment of cellular histones with peptidylarginine deiminase (PAD) results in loss of staining for the histone H4 arginine 3 methyl mark, suggesting that PADs can reverse histone arginine methyl modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.01328 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
Background: Laryngeal cancer is a common head and neck cancer, and its occurrence and development are closely related to a variety of epigenetic modifications. protein arginine methyltransferase 1 (PRMT1) is an important type I protein arginine methyltransferase, which catalyzes the monomethylation and asymmetric dimethylation of arginine and participates in the occurrence and development of a variety of cancers. Current research has found that the expression of PRMT1 is increased in laryngeal carcinoma tissues.
View Article and Find Full Text PDFACS Chem Biol
December 2024
UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China. Electronic address:
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary. Electronic address:
Dysregulation of the expression levels and the activity of kinases/phosphatases is an intrinsic hallmark of tumor transformation and progression, as either as a primary cause or consequence. The myosin phosphatase (MP)/protein arginine methyltransferase 5 (PRMT5)/histone (H4) pathway is an oncogenic signaling pathway downregulating the gene expression of tumor suppressors. However, the upstream regulators of the pathway are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!