Photoluminescent layered lanthanide silicates.

J Am Chem Soc

Contribution from the Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: August 2004

AI Article Synopsis

  • The study focuses on the hydrothermal synthesis and structural analysis of layered lanthanide silicates called AV-22 materials, which include elements like Y, Tb, and various lanthanides (Eu, Er, Gd).
  • Characterization methods used include X-ray diffraction, thermogravimetry, scanning electron microscopy, and photoluminescence spectroscopy, revealing that Er-AV-22 serves as an infrared phosphor while Tb and Eu variants emit visible light with comparable efficiency to commercial lamps.
  • The materials' structural framework allows for the incorporation of multiple Ln ions, enhancing their photoluminescent properties, including efficient energy transfer from Tb to Eu ions through ion replacement in their structure.

Article Abstract

The hydrothermal synthesis and structural characterization of layered lanthanide silicates, K(3)[M(1-a)Ln(a)Si(3)O(8)(OH)(2)] (M = Y(3+), Tb(3+); Ln = Eu(3+), Er(3+), Tb(3+), and Gd(3+)), named AV-22 materials, are reported. The structure of these solids was elucidated by single-crystal (180 K) and powder X-ray diffraction and further characterized by chemical analysis, thermogravimetry, scanning electron microscopy, (29)Si MAS NMR, and photoluminescence spectroscopy. The Er-AV-22 material is a room-temperature infrared phosphor, while Tb- and Eu-AV-22 are visible emitters with output efficiencies comparable to standards used in commercial lamps. The structure of these materials allows the inclusion of a second (or even a third) type of Ln(3+) ion in the framework and, therefore, the fine-tuning of their photoluminescent properties. For the mixed Tb(3+)/Eu(3+) materials, evidence has been found of the inclusion of Eu(3+) ions in the interlayer space by replacing K+ ions, further allowing the activation of Tb(3+)-to-Eu(3+) energy transfer mechanisms. The occurrence probability of such mechanisms ranges from 0.62 (a = 0.05) to 1.20 ms(-1) (a = 0.1) with a high energy transfer efficiency (0.73 and 0.84, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja047905nDOI Listing

Publication Analysis

Top Keywords

layered lanthanide
8
lanthanide silicates
8
energy transfer
8
photoluminescent layered
4
silicates hydrothermal
4
hydrothermal synthesis
4
synthesis structural
4
structural characterization
4
characterization layered
4
silicates k3[m1-alnasi3o8oh2]
4

Similar Publications

Eu-Gd co-doped glasses composed of 15BO-12SiO-(40-x)TeO-3EuO-xGdO-12BiO-8BaO-10ZnO with x = 0-4 mol% (coded as EuGd-x) were fabricated using melt quench approach to develop transparent radiation shielding system. Their structural, optical and mechanical properties were examined. 5.

View Article and Find Full Text PDF

Adsorption of Eu and Gd on high-charge micas as inner-sphere complexes.

J Colloid Interface Sci

April 2025

Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:

High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Mesoporous Lanthanum-Doped Magnesium Phosphate Nanopowders Promote Healing of Critical-Size Bone Defects: An In Vivo Study.

J Biomed Mater Res B Appl Biomater

January 2025

Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.

Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!