Investigations of different sources of acrylamide formation in model systems consisting of amino acids and sugars have indicated the presence of two pathways of acrylamide generation; the main pathway specifically involves asparagine to directly produce acrylamide after a sugar-assisted decarboxylation step, and the second, nonspecific pathway involves the initial formation of acrylic acid from different sources and its subsequent interaction with ammonia and/or amines to produce acrylamide or its N-alkylated derivatives. Aspartic acid, beta-alanine, and carnosine were found to follow the acrylic acid pathway. Labeling studies using [(13)C-4]aspartic acid have confirmed the occurrence in this amino acid of a previously proposed sugar-assisted decarboxylation mechanism identified in the asparagine/glucose model system. In addition, creatine was found to be a good source of methylamine in model systems and was responsible for the formation of N-methylacrylamide through the acrylic acid pathway. Labeling studies using creatine (methyl-d(3)) and (15)NH(4)Cl have indicated that both the nitrogen and the methyl groups of methylamine had originated from creatine. Furthermore, analysis of cooked meat samples has also confirmed the formation of N-methylacrylamide during cooking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf049421g | DOI Listing |
Sci Rep
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!