The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1.

PLoS Biol

Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom.

Published: August 2004

The conversion of multinucleate postmitotic muscle fibers to dividing mononucleate progeny cells (cellularisation) occurs during limb regeneration in salamanders, but the cellular events and molecular regulation underlying this remarkable process are not understood. The homeobox gene Msx1 has been studied as an antagonist of muscle differentiation, and its expression in cultured mouse myotubes induces about 5% of the cells to undergo cellularisation and viable fragmentation, but its relevance for the endogenous programme of salamander regeneration is unknown. We dissociated muscle fibers from the limb of larval salamanders and plated them in culture. Most of the fibers were activated by dissociation to mobilise their nuclei and undergo cellularisation or breakage into viable multinucleate fragments. This was followed by microinjection of a lineage tracer into single fibers and analysis of the labelled progeny cells, as well as by time-lapse microscopy. The fibers showing morphological plasticity selectively expressed Msx1 mRNA and protein. The uptake of morpholino antisense oligonucleotides directed to Msx1 led to a specific decrease in expression of Msx1 protein in myonuclei and marked inhibition of cellularisation and fragmentation. Myofibers of the salamander respond to dissociation by activation of an endogenous programme of cellularisation and fragmentation. Lineage tracing demonstrates that cycling mononucleate progeny cells are derived from a single myofiber. The induction of Msx1 expression is required to activate this programme. Our understanding of the regulation of plasticity in postmitotic salamander cells should inform strategies to promote regeneration in other contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC509293PMC
http://dx.doi.org/10.1371/journal.pbio.0020218DOI Listing

Publication Analysis

Top Keywords

progeny cells
12
muscle fibers
8
mononucleate progeny
8
undergo cellularisation
8
endogenous programme
8
cellularisation fragmentation
8
msx1
6
fibers
5
cells
5
cellularisation
5

Similar Publications

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

A stromal inflammasome Ras safeguard against Myc-driven lymphomagenesis.

Nat Immunol

January 2025

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Clonal Tracking in the Mouse Brain with Single-Cell RNA-Seq.

Methods Mol Biol

January 2025

Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.

Lineage tracing methods enable the identification of all progeny generated by a single cell. High-throughput lineage tracing in the mammalian brain involves parallel labeling of thousands of progenitor cells with genetic barcodes in vivo followed by single-cell RNA-seq of lineage relations and cell types. Here we describe the generation of barcoded lentivirus, microinjections into the embryonic day 9.

View Article and Find Full Text PDF

Single-Cell Lineage Tracing and Clonal State-Fate Analysis.

Methods Mol Biol

January 2025

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.

Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!