AI Article Synopsis

  • Recent studies indicate that bismuth accumulates in Leydig cells, which are important for testosterone production, and this accumulation is linked to lower testosterone levels and a decrease in Leydig cell numbers.
  • Researchers have created a new method to label bismuth and testicular macrophages, leading to significant findings.
  • The results show that the cells thought to be Leydig cells are actually bismuth-loaded macrophages, prompting a reevaluation of how bismuth affects interactions between testicular macrophages and Leydig cells.

Article Abstract

Recent studies suggest that bismuth accumulates in Leydig cells. In addition, a reduced level of serum testosterone and a statistically significant reduction of Leydig cells have been observed. It was therefore hypothesized that Bi has a direct toxic effect on rat Leydig cells. We have now developed a method for double labeling of bismuth and ED-2 (a marker for testicular macrophages). The present data demonstrate that the heavily bismuth-loaded cells in rat testis, originally interpreted as being Leydig cells, are bismuth-loaded macrophages. Consequently, our data suggest a modified hypothesis regarding bismuth-induced interactions between testicular macrophages and Leydig cells.

Download full-text PDF

Source
http://dx.doi.org/10.1369/jhc.4B6286.2004DOI Listing

Publication Analysis

Top Keywords

leydig cells
24
testicular macrophages
16
interactions testicular
8
macrophages leydig
8
cells
7
leydig
6
macrophages
5
bismuth
4
bismuth uptake
4
uptake rat
4

Similar Publications

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

The role of luteinizing hormone activity in spermatogenesis: from physiology to clinical practice.

Reprod Biol Endocrinol

January 2025

Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.

The production of spermatozoa, a process known as spermatogenesis, is primarily controlled by follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-driven testosterone. LH acts on the Leydig cells, stimulating steroid production, predominantly testosterone, and activating critical inter-related spermatogenesis regulatory pathways. Despite evidence that exogenous gonadotropins containing LH activity can effectively restore spermatogenesis in males with hypogonadotropic hypogonadism, the use of these drugs to treat other forms of male infertility is the subject of an ongoing debate.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates adrenomedullin's (ADM) role in protecting estrogen production in Leydig cells by targeting the TGF-β1/Smads signaling pathway.
  • Treatment with ADM via recombinant adenovirus (Ad-ADM) in Leydig cells improved cell viability and hormone production in the presence of lipopolysaccharide (LPS), a compound that can induce cellular stress.
  • Results indicated that Ad-ADM not only maintained testosterone production and aromatase activity but also reduced the harmful effects of TGF-β1 and Smads, suggesting that ADM supports the overall hormone balance in Leydig cells.
View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!