We report on the effect of a set of water-dispersible small-molecule surfactants (the main and the longest-hydrocarbon components of which are a citric acid ester of monostearate, a sodium salt of stearol-lactoyl lactic acid, and a polyglycerol ester of stearic acid) on molecular, thermodynamic, and functional properties of the major storage protein of broad beans (Vicia faba) legumin in different molecular states (native, heated, and acid-denatured). The interaction between legumin and the surfactants has been characterized by a combination of thermodynamic methods, namely, mixing calorimetry and multiangle laser static and dynamic light scattering. It was found that hydrogen bonds, electrostatic interactions, and hydrophobic contacts provided a basis for the interactions between the surfactants and both the native and the denatured protein in aqueous medium. Intensive association of the protein molecules in a bulk aqueous medium in the presence of the surfactants was revealed by static and dynamic laser light scattering. In consequence of this, both the surface activity and the gel-forming ability of legumin increased markedly, which has been shown by tensiometry, estimation of protein foaming capacity, and steady-state viscometry. A likely molecular mechanism underlying the effects of small-molecule surfactants on legumin structure-forming properties at the interface and in a bulk aqueous medium is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2004.05.039DOI Listing

Publication Analysis

Top Keywords

small-molecule surfactants
12
aqueous medium
12
thermodynamic functional
8
functional properties
8
vicia faba
8
static dynamic
8
light scattering
8
bulk aqueous
8
surfactants
6
legumin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!