To determine the effects of Tityus serrulatus scorpion toxin on lung compliance and resistance, ionic equilibrium and acid-base balance over time in anesthetized and mechanically ventilated rats, we measured air flow, tracheal and esophageal pressure. Lung volume was obtained by electronic integration of airflow signal. Arterial blood samples were collected through a catheter at baseline (before) and 5, 15, 30 and 60 min after scorpion toxin injection for arterial blood gases, bicarbonate, and alkali reserve levels as well as for, sodium, potassium, magnesium, glucose, lactate, hematocrit, and osmolality analysis. Injection of the gamma fraction of the T. serrulatus scorpion venom in rats under mechanical ventilatory support leads to a continuous decrease in lung compliance secondary to pulmonary edema, but no change in airway resistance. The changes in arterial blood gases characterizing metabolic acidosis were accompanied by an increase in arterial lactate and glucose values, suggesting a scorpion toxin-induced lactic acidosis, in association with poor tissue perfusion (hypotension and low cardiac output). Moreover, scorpion toxin injection resulted in hyperosmolality, hyperkalemia, hypermagnesemia and an increase in hematocrit. The experiments have shown a clinically relevant animal model to study severe scorpion envenoming and may help to better understand the scorpion envenoming syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2004.05.009DOI Listing

Publication Analysis

Top Keywords

lung compliance
12
scorpion toxin
12
arterial blood
12
acid-base balance
8
scorpion
8
rats mechanical
8
serrulatus scorpion
8
toxin injection
8
blood gases
8
scorpion envenoming
8

Similar Publications

Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).

Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.

View Article and Find Full Text PDF

Synergistic effects of mTOR inhibitors with VEGFR3 inhibitors on the interaction between TSC2-mutated cells and lymphatic endothelial cells.

Sci China Life Sci

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.

View Article and Find Full Text PDF

The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.

View Article and Find Full Text PDF

Mechanical power (MP) refers to ventilator-delivered energy to the lungs, which may induce lung injury. We examined the relationship between MP and mortality in patients with acute respiratory distress syndrome (ARDS) who underwent prone positioning. This multicenter retrospective study included data on all patients admitted to the intensive care units of eight referral hospitals in Taiwan from October 2015 to March 2016, and in Chang Gung Memorial Hospital Linkou branch from January 2017 to October 2023.

View Article and Find Full Text PDF

This study aimed to observe the mechanism of hydrogen (H) in a lung transplantation model simulated by pulmonary microvascular endothelial cells (PMVECs), which were divided into 5 groups. The blank group was the normal PMVECs. During cold ischemia period, PMVECs in the control, O, or H groups were aerated with no gas, O, or 3% H, and 3% H after transfected with a small interfering RNA targeting Nrf2 in the H+si-Nrf2 group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!