Epidermal phenylalanine hydroxylase (PAH) produces L-tyrosine from the essential amino acid L-phenylalanine supporting melanogenesis in human melanocytes. Those PAH activities increase linearly in the different skin phototypes I-VI (Fitzpatrick classification) and also increase up to 24h after UVB light with only one minimal erythemal dose. Since UVB generates also H(2)O(2), we here asked the question whether this reactive oxygen species could influence the activity of pure recombinant human PAH. Under saturating conditions with the substrate L-phenylalanine (1x10(-3)M), the V(max) for enzyme activity increased 4-fold by H(2)O(2) (>2.0x10(-3)M). Lineweaver-Burk analysis identified a mixed activation mechanism involving both the regulatory and catalytic domains of PAH. Hyperchem molecular modelling and Deep View analysis support oxidation of the single Trp(120) residue to 5-OH-Trp(120) by H(2)O(2) causing a conformational change in the regulatory domain. PAH was still activated by H(2)O(2) in the presence of the electron donor/cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin despite slow oxidation of this cofactor. In vivo FT-Raman spectroscopy confirmed decreased epidermal phenylalanine in association with increased tyrosine after UVB exposure. Hence, generation of H(2)O(2) by UVB can activate epidermal PAH leading to an increased L-tyrosine pool for melanogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.07.082DOI Listing

Publication Analysis

Top Keywords

phenylalanine hydroxylase
8
activated h2o2
8
epidermal phenylalanine
8
h2o2
6
pah
6
human phenylalanine
4
hydroxylase activated
4
h2o2 novel
4
novel mechanism
4
mechanism increasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!