Starch acetates are novel biodegradable polymers which undergo slower degradation and swelling than native starch. Retinal pigment epithelium (RPE) is an important target tissue in ocular treatment. The cellular uptake of starch acetate microparticles and degradation of starch acetate by cultured human RPE-cell line (D407) was examined. Calcein-containing starch acetate microparticles were prepared by a modified water-in-oil-in-water double-emulsion technique. The cellular uptake of the starch acetate microparticles was analysed using flow cytometry and confocal microscopy. Degradation of starch acetate films by the homogenate of lysed RPE cells was determined by gel permeation chromatography. The effect of the microparticles on RPE cell viability was determined by the MTT colorimetric assay. The mean diameter (D50%) of microparticles was 11 microm. During 3-h incubation in RPE-cell culture, 8.1 +/- 0.8% of D407 cells took up starch acetate microparticles. Confocal microscopy confirmed the internalisation of microparticles. Incubation of the starch acetate film in the RPE-cell homogenate considerably decreased the molecular weight of starch acetate in the film during 24 h. The viability of cultured RPE cells was at least 82% after 24-h incubation with the microparticles. The present results show that the starch acetate microparticles are taken up by the RPE cells and the polymer can be degraded by the enzymes in these cells. Starch acetate microparticles may be suitable for drug delivery to the RPE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2004.05.016 | DOI Listing |
J Agric Food Chem
October 2024
State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
The effect of the addition of native starch (S) and modified starches (distarch phosphate (SP), acetylated distarch phosphate (AP), and starch acetate (SA)) in emulsion-type sausage on the digestion process of meat protein was studied in this work. The addition of native and modified starches reduced the release of -NH during the simulated gastric digestion stage, whereas the addition of SA increased the total release of -NH after the whole digestion. Peptidomic analysis revealed that the presence of starch decreased the release of peptides in the gastric digestion.
View Article and Find Full Text PDFFood Chem
September 2024
Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Postal Code, 45371-38791, Zanjan, Iran.
The objective of the current work was to evaluate the impacts of dielectric barrier discharge plasma and repeated dry-heat treatments on the acetylation process of corn starch. The combined modification resulted in a higher substitution degree of acetate groups on starch chains compared to the acetylation treatment alone. This outcome was linked to the increase in surface area and structural organization level of granules achieved through the application of plasma and heating/cooling cycles, respectively.
View Article and Find Full Text PDFCarbohydr Polym
May 2024
Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018,China. Electronic address:
The use of natural starch as a replacement for petroleum-based packaging materials is limited due to its poor processability, weak mechanical properties, and strong moisture sensitivity. To address these limitations, this study adopts molecular design of hydroxypropylation and acetylation to sequentially modify natural starch, and material design of introducing acetylated cellulose nanofibers (ACNF) into the starch matrix to reinforce the material. Hydroxypropylation decreased the interaction force between the starch molecular chains, thereby reducing the glass transition temperature.
View Article and Find Full Text PDFCarbohydr Polym
October 2022
Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!