Repeated treatment with methamphetamine leads to an enhancement in the methamphetamine-induced dopamine release and its related behaviors. This phenomenon is called sensitization or reverse tolerance. Protein kinase C (PKC) controls numerous signaling cascades by virtue of its ability to phosphorylate target proteins that include other kinases. The purpose of study was then to investigate the implication of PKC in the development of sensitization to the rewarding effect and to the extracellular dopamine release induced by methamphetamine in rats. The conditioned place preference paradigm and in vivo microdialysis assay were performed in the present study. An intra-nucleus accumbens injection of a selective PKC inhibitor chelerythrine chloride abolished the enhancement of the methamphetamine-induced place preference following repeated treatment with methamphetamine. Furthermore, intra-nucleus accumbens injection of chelerythrine chloride blocked the development of sensitization to dopamine release and to the decrease in the major dopamine metabolites, 3'4-dihydroxyphenylacetic acid and homovanillic acid, in the nucleus accumbens induced by repeated methamphetamine treatment. Under these conditions, the immunoreactivity of the cytosolic phosphorylated conventional- or classic-type PKC in the limbic forebrain region including the nucleus accumbens was slightly, but significantly increased in methamphetamine-sensitized rats. The present data provide evidence for the implication of PKC in the nucleus accumbens in the development of sensitization to the methamphetamine-induced rewarding effect, dopamine release and inhibition of dopamine metabolism/re-uptake in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2004.06.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!