Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel.

Aquat Toxicol

Centro Austral de Investigaciones Científicas, C.C. 92 9410 Ushuaia, Tierra del Fuego, Argentina.

Published: September 2004

The aim of this work was to study the oxidative profile of digestive glands of two limpets species (Nacella (Patinigera) magellanica and Nacella (Patinigera) deaurata) exposed to different environmental conditions. The intertidal population of N. (P.) magellanica is subjected to a wide variety of stresses not experienced by N. (P.) deaurata. Although a typical electron paramagnetic resonance (EPR) spectrum of ascorbyl radical in digestive gland from both limpets was observed, neither ascorbyl radical content nor the ascorbyl radical content/ascorbate content ratio was significantly different, suggesting that the difference in the environmental conditions did not appear to be responsible for developing alterations in the oxidative status of both organisms at the hydrophilic level (e.g. cytosol). Lipid peroxidation in the digestive glands was estimated, both as the content of thiobarbituric acid reactive substances (TBARS) and as the content of lipid radicals assessed by EPR, in both organisms. TBARS and lipid radical content were 34.8 and 36.5%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. On the other hand, total iron content and the rate of generation of superoxide anion were 47.9 and 51.4%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. The activity of catalase and superoxide dismutase (SOD) was 35.3 and 128.6% higher in N. (P.) magellanica as compared to N. (P.) deaurata, respectively. No significant differences were determined between the digestive glands of both molluscs regarding the content of total thiols. alpha-Tocopherol and beta-carotene content were significantly lower in N. (P.) magellanica as compared to N. (P.) deaurata. A distinctive EPR signal for the adduct Fe--MGD--NO (g = 2.03 and a(N) = 12.5 G) was detected in the homogenates of digestive glands of both limpets. A significant difference in the content of the Fe-MGD-NO adduct in digestive glands from N. (P.) magellanica and N. (P.) deaurata (491 +/- 137 and 839 +/- 63 pmol/g FW, respectively) was observed. Taken as a whole, the data presented here indicated that coping with environmental stressing conditions requires a complex adjustment of the physiological metabolic pathways to ensure survival by minimizing intracellular damage. It is likely that N. (P.) magellanica has a particular evolutionary adaptation to extreme environmental conditions by keeping iron content low and antioxidant activities high.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2004.05.008DOI Listing

Publication Analysis

Top Keywords

digestive glands
20
environmental conditions
16
magellanica compared
16
compared deaurata
16
ascorbyl radical
12
lower magellanica
12
content
10
exposed environmental
8
glands limpets
8
nacella patinigera
8

Similar Publications

We investigated the extracellular and intracellular digestion of bivalves employing magnetic resonance imaging (MRI). Ruditapes philippinarum clams and Mytilus galloprovincialis mussels were incubated in seawater containing a contrast reagent (GdDTPA) at 20°C. The digestive systems, from the esophagus to the rectum, were visualized at a high signal intensity by the T1-weighted MRI.

View Article and Find Full Text PDF

SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs.

View Article and Find Full Text PDF

To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

Cell Wall Microdomains Analysis in the Quadrifids of .

Int J Mol Sci

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.

Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!