Helicobacter pylori infects the stomachs of nearly a half the human population, yet most infected individuals remain asymptomatic, which suggests that there is a host defense against this bacterium. Because H. pylori is rarely found in deeper portions of the gastric mucosa, where O-glycans are expressed that have terminal alpha1,4-linked N-acetylglucosamine, we tested whether these O-glycans might affect H. pylori growth. Here, we report that these O-glycans have antimicrobial activity against H. pylori, inhibiting its biosynthesis of cholesteryl-alpha-D-glucopyranoside, a major cell wall component. Thus, the unique O-glycans in gastric mucin appeared to function as a natural antibiotic, protecting the host from H. pylori infection.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1099250DOI Listing

Publication Analysis

Top Keywords

natural antibiotic
8
gastric mucin
8
helicobacter pylori
8
pylori infection
8
pylori
6
antibiotic function
4
function human
4
human gastric
4
mucin helicobacter
4
infection helicobacter
4

Similar Publications

Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.

View Article and Find Full Text PDF

Background: Functional foods and dairy products are gaining global attention due to their nutritional value and health-promoting characteristics. Lactic acid bacteria (LAB) are one of the promising components included in these products, thanks to their probiotic properties and ability to produce bioactive compounds such as bacteriocins. On the other hand, ectomycorrhizal wild mushrooms (truffles) are known for their ethnomycological importance.

View Article and Find Full Text PDF

Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials.

Environ Res

January 2025

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (M. tuberculosis) bacteria can cause oxidative stress and the production of inflammatory cytokines, creating an environment that enhances tumour formation, progression and metastasis. Epidemiological studies have found a link between lung cancer and tuberculosis (TB), but the cellular mechanism is still unclear.

View Article and Find Full Text PDF

Background: Nephrotoxicity is a condition characterized by a decline in kidney function due to the toxic effects of medications and substances, such as the nephrotoxic antibiotic gentamicin. Artocarpus champeden is a traditional medicinal plant that is commonly found in Indonesia.

Objective: This study aims to evaluate the potential of the ethyl acetate fraction of Artocarpus champeden leaves (FEC) in improving kidney function in an animal model of nephrotoxicity induced by gentamicin and piroxicam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!