Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erh204 | DOI Listing |
Rapid Commun Mass Spectrom
May 2025
Technology Center of Qingdao Customs, Qingdao, China.
The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700, Maisons-Alfort, France.
This study presents the development and validation of a precise analytical method for the speciation analysis of arsenic (As) compounds, including inorganic species [As(III) and As(V)] and organic species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The method employs anion-exchange high-performance liquid chromatography (AE HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). To optimize the sample preparation process, microwave-assisted extraction (MAE) and heat-assisted extraction (HAE) techniques were evaluated and compared.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. Electronic address:
Dry wells are neighborhood-scale stormwater infiltration systems increasingly used in drought-prone areas for stormwater capture and groundwater recharge. These systems bypass the low permeability surface soil to maximize infiltration rates. However, hydrophilic contaminants of emerging concern (CECs) in urban runoff pose potential groundwater contamination risks.
View Article and Find Full Text PDFEnviron Res
January 2025
Southern California Coastal Water Research Project, Costa Mesa, CA, 92626, United States.
The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and benthic sediment during the wet and dry season in the coastal waters of the San Pedro Bay Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, the Netherlands.
As endpoints of watersheds, bays concentrate erosion- and human-derived substances such as dissolved inorganic nutrients and pollutants. We investigated the water movement and biogeochemistry of two bays in Curaçao: Piscadera Bay and Spaanse Water, during the dry (May 2022 and 2023) and wet seasons (November 2021 and 2023). Bay-ocean exchange was limited during the dry season, enhancing nutrient concentrations in the bays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!