A manganese porphyrin catalyst employing chlorite (ClO(2)(-)) as a "shunt" oxidant displays remarkable activity in alkane oxidation, oxidizing cyclohexane to cyclohexanol and cyclohexanone with >800 turnover numbers. The ketone is apparently formed without the intermediacy of alcohol and accounts for an unusually large fraction of the product ( approximately 40%). Radical scavenging experiments indicate that the alkane oxidation mechanism involves both carbon-centered and oxygen-centered radicals. The carbon-radical trap CBrCl(3) completely suppresses cyclohexanone formation and reduces cyclohexanol turnovers, while the oxygen-radical trap Ph(2)NH inhibits all oxidation until it is consumed. These observations are indicative of an autoxidation mechanism, a scenario further supported by TEMPO inhibition and (18)O(2) incorporation into products. However, similar cyclohexane oxidation activity occurs when air is excluded. This is explained by mass spectrometric and volumetric measurements showing catalyst-dependent O(2) evolution from the reaction mixture. The catalytic disproportionation of ClO(2)(-) into Cl(-) and O(2) provides sufficient O(2) to support an autoxidation mechanism. A two-path oxidation scheme is proposed to explain all of the experimental observations. The first pathway involves manganese-porphyrin catalyzed decomposition of ClO(2)(-) into both O(2) and an unidentified radical initiator, leading to classical autoxidation chemistry providing equal amounts of cyclohexanol and cyclohexanone. The second pathway is a "rebound" oxygenation involving a high-valent manganese-oxo intermediate, accounting for the excess of alcohol over ketone. This system highlights the importance of mechanistic studies in catalytic oxidations with highly reactive oxidants, and it is unusual in its ability to sustain autoxidation even under apparent exclusion of O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic049922jDOI Listing

Publication Analysis

Top Keywords

manganese-porphyrin catalyzed
8
alkane oxidation
8
cyclohexanol cyclohexanone
8
autoxidation mechanism
8
oxidation
5
radical autoxidation
4
autoxidation autogenous
4
autogenous evolution
4
evolution manganese-porphyrin
4
catalyzed alkane
4

Similar Publications

We employed density functional theory (DFT) calculations to elucidate the mechanism and origin of enantioselectivity in the C-H hydroxylation reaction catalyzed by a chiral manganese porphyrin complex. Our study reveals that the chiral manganese porphyrin forms a two-point hydrogen bonding interaction with the substrate. Specifically, the hydrogen atom abstraction of the methylene -() C-H bond at the heterocyclic C-3 position is 1.

View Article and Find Full Text PDF

A heterogenized Mn(III) porphyrin-based catalyst was prepared for dye degradation. The new Mn(III) complex of 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin was immobilized, via covalent bond, in chloropropyl silica gel, generating the material (Sil-Cl@MnP) with a loading of 23 μmol manganese porphyrin (MnP) per gram of Sil-Cl. This material was used as a catalyst in degradation reactions of model dyes, a cationic dye [methylene blue (MB)] and an anionic dye (reactive red 120, RR120), using PhI(OAc) and HO as oxidants.

View Article and Find Full Text PDF

A Self-Cascade Oxygen-Generating Nanomedicine for Multimodal Tumor Therapy.

Small

November 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.

Natural and artificial enzyme oxygen-generating systems for photodynamic therapy (PDT) are developed for tumor treatment, yet they have fallen short of the desired efficacy. Moreover, both the enzymes and photosensitizers usually need carriers for efficient delivery to tumor sites. Here, a self-cascade-enhanced multimodal tumor therapy is developed by ingeniously integrating self-cascade-enhanced PDT with Zn-overloading therapy.

View Article and Find Full Text PDF

Per/polysulfide species that are generated from endogenously produced hydrogen sulfide have critical regulatory roles in a wide range of cellular processes. However, the lack of delivery systems that enable controlled and sustained release of these unstable species in biological systems hinders the advancement of sulfide biology research, as well as the translation of knowledge to therapeutic applications. Here, a novel approach is developed to generate per/polysulfide species in cells by combining an H S donor and manganese porphyrin-containing polymeric micelles (MnPMCs) that catalyze oxidization of H S to per/polysulfide species.

View Article and Find Full Text PDF

Macrocyclic metal porphyrin complexes can act as shape-selective catalysts mimicking the action of enzymes. To achieve enzyme-like reactivity, a mechanistic understanding of the reaction at the molecular level is needed. We report a mechanistic study of alkene epoxidation by the oxidant iodosylbenzene, mediated by an achiral and a chiral manganese(V)oxo porphyrin cage complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!