Targeted ferromagnetic coupling in a trinuclear copperII complex: analysis of the St = 3/2 spin ground state.

Inorg Chem

Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 8, D-48149 Münster, Germany. tglaser@ uni-muenster.de

Published: August 2004

The trinuclear Cu(II) complex [(talen)Cu(II)(3)] (1) using the new triplesalen ligand H(6)talen has been synthesized and structurally characterized. The three Cu(II) ions are bridged in a m-phenylene linkage by the phloroglucinol backbone of the ligand. This m-phenylene bridging mode results in ferromagnetic couplings with an S(t) = (3)/(2) spin ground state, which has been analyzed by means of EPR spectroscopy and DFT calculations. The EPR spectrum exhibits an unprecedented pattern of 10 hyperfine lines due to the coupling of three Cu(II) ions (I = (3)/(2)). Resonances around g = 4 in both perpendicular and parallel mode EPR spectra demonstrate a zero-field splitting of D approximately 74 x 10(-4) cm(-1) arising from anisotropic/antisymmetric exchange interactions. The DFT calculations show an alteration in the sign of the spin densities of the central benzene ring corroborating the spin-polarization mechanism as origin for the ferromagnetic coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic049252hDOI Listing

Publication Analysis

Top Keywords

ferromagnetic coupling
8
3/2 spin
8
spin ground
8
ground state
8
three cuii
8
cuii ions
8
dft calculations
8
targeted ferromagnetic
4
coupling trinuclear
4
trinuclear copperii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!