Keypathophysiologic pathways in age-related macular disease.

Graefes Arch Clin Exp Ophthalmol

Department of Ophthalmology, University of Bonn, Ernst-Abbestrasse 2, 53127 Bonn, Germany.

Published: August 2004

Purpose: To review current knowledge of key pathogenetic pathways in age-related macular disease (AMD).

Methods: Experimental evidence and clinical observations are reviewed.

Results: A number of common downstream pathophysiologic pathways appear to be relevant in AMD manifestations irrespective of primary heterogeneous etiologies. These include sequelae of oxidative damage, retinal pigment epithelium (RPE) cell dysfunction with accumulation of lipofuscin and impairment of lysosomal functions, deposition of subsequently incompletely degraded material at the basal RPE cell side and alterations in Bruch's membrane extracellular matrix, immunologic responses to extracellular material (drusen) with subsequent growth of drusen, induction of choroidal neovascularization as a result of imbalance between anti-angiogenetic and proangiogenetic factors as well as cell death (geographic atrophy) without prior neovascular events.

Conclusions: Understanding is expanding regarding the sequence of events that lead to early and late lesions in AMD. Therapeutic approaches that focus on the molecular mechanisms are more likely to succeed than currently available treatment options as exemplified by the management of choroidal neovascularisations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-004-0976-xDOI Listing

Publication Analysis

Top Keywords

pathways age-related
8
age-related macular
8
macular disease
8
rpe cell
8
keypathophysiologic pathways
4
disease purpose
4
purpose review
4
review current
4
current knowledge
4
knowledge key
4

Similar Publications

Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature.

View Article and Find Full Text PDF

Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence.

Aging Dis

January 2025

Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!